

ENVIRONMENTAL PRODUCT DECLARATION

in accordance with ISO 14025, ISO 21930 and EN 15804

Owner of the declaration:	Oy Forcit Ab
Program operator:	The Norwegian EPD Foundation
Publisher:	The Norwegian EPD Foundation
Declaration number:	NEPD-2253-1032-EN
Registration number:	NEPD-2253-1032-EN
ECO Platform reference number:	-
Issue date:	16.06.2020
Valid to:	16.06.2025

Kemiitti 510

(produced in Karlskoga, Sweden)

Oy Forcit Ab

www.epd-norge.no

General information

Product:

Kemiitti 510 (produced in Karlskoga, Sweden)

Program operator:

The Norwegian EPD FoundationP.O. Box 5250 Majorstuen, N-0303 Oslo NorwayPhone:+47 977 22 020e-mail:post@epd-norge.no

Declaration number:

NEPD-2253-1032-EN

ECO Platform reference number:

-

This declaration is based on Product Category Rules: CEN Standard EN 15804 serves as core PCR NPCR 024:2016 version 1.0 Explosives and Initiation Systems

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit:

1 kg of manufactured, installed and used (detonated)

Declared unit with option:

A1-3, A4 and A5

Functional unit: Declared unit is applied instead on functional unit.

Verification:

The CEN Norm EN 15804 serves as the core PCR. Independent verification of the declaration and data, according to ISO14025:2010

internal

external

Third party verifier: Alexander Borg Alexander Borg, Asplan Viak AS

(Independent verifier approved by EPD Norway)

Owner of the declaration:

Oy Forcit Ab Contact person: Phone: e-mail:

Veera Komulainen +358 207 440 217 veera.komulainen@forcit.fi

Manufacturer:

Forcit Sweden AB Bofors Skjutfält 201, 691 52 Karlskoga, Sweden Phone: +46 587 10 999 e-mail: forcit@forcit.se

Place of production:

Karlskoga, Sweden

Management system:

ISO 9001, ISO 14001

Organisation no:

0103189-6

Issue date:

16.06.2020

Valid to:

16.06.2025

Year of study:

LCA was conducted between May 2019 and February 2020. Production data represents year 2018.

Comparability:

EPDs of construction products may not be comparable if they do not comply with EN 15804 and are not seen in a building context. A comparison of explosives, detonators and initiation systems must be based on scenarios with comparable technical specifications.

The EPD has been worked out by:

Emma Salminen LCA Consulting Oy

am m

🕀 LCA Consulting

Approved

Håkon Hauan Managing Director of EPD-Norway

Product

Product description:

Kemiitti 510 is an emulsion explosive produced at use site and pumped straight into the borehole. Kemiitti 510 is available with solid ammonium nitrate prills (0-30 %) and normally used for quarry, open pit and open cut excavations.

Kemiitti 510 consists of matrix, solid ammonium nitrate prills, gassing agent, auxiliary materials and lubricating water. Semi-finished components are transported directly from Karlskoga to user site by Mobile Explosives Manufacturing Units (MEMUs). Kemiitti 510 is produced at the blasting site in a MEMU truck by mixing semi-finished components that are non-explosive materials. The mixed product is pumped into the borehole where a chemical reaction sensitizes it to a finished explosive.

Product specification:

Energy content of Kemiitti 510: 3.1 MJ/kg

Materials	%
Ammonium nitrate	86-95
Distillates (petroleum)	1-6
Monoethylene glycol	0-1.5

LCA: Calculation rules

Declared unit:

1 kg of manufactured, installed and used (detonated) product.

Technical data:

1 kg of bulk emulsion explosive.

EC-type examination certificates: CE0589 (BAM, Germany), PvTT 115/03

Market:

Nordic Countries (Finland, Sweden, Norway)

Reference service life, product:

Reference service life is not relevant to explosives. Explosives are used only once.

System boundary:

Flow chart is presented below. The main unit processes of each life cycle stage are presented in the dark grey boxes. The main background processes and detonation emissions are presented in the light grey boxes.

Data quality:

Specific data is used to model A4 transportation, detonation stage and production operations at Karlskoga and Gällivare production plant. Specific data represent year 2018. Locations of raw material suppliers and A2 transportation of raw materials are partly modelled based on specific data.

Generic data is used to model the production of raw materials, energy etc. (background processes). Generic data is mainly from Gabi Professional database. Ecoinvent database and literature sources are also used to fill data gaps. Characterization factors are based on EN 15804:2012. Ozone depletion potential result is deemed the most uncertain of the assessed environmental impact results due to the usage of secondary data that includes CFCs.

Data used is not older than 10 years.

Cut-off criteria:

All major raw material and energy inputs are included. Production processes of specific raw materials and energy flows that are used in minor quantities (<1% of total mass input or energy use of a unit process) are not included in the assessment. This cut-off rule does not apply for hazardous materials and substances.

Allocation:

Allocation is conducted in accordance with the provisions of EN 15804. Energy and water inputs, and municipal waste generated are allocated equally among all products manufactured at the production plant through mass allocation. Influence of primary production of a recycled material is allocated to the main product for which the material was used. The recycling process and transportation of the material is allocated to this analysis.

LCA: Scenarios and additional technical information

The following information describes the scenarios in the different modules of the EPD.

AN solution, AN prills, gassing agent and other auxiliary components are transported to Karlskoga production plant. Semifinished components are each loaded in separate tanks on a MEMU truck in Karlskoga. MEMU truck delivers components directly to the user site. Matrix is produced on site and combined with dry AN-prills, gassing agent and lubricating water (A5-1 stage). Glycol is used in wintertime for frost protection.

The detonation emissions are calculated based on balanced chemical reaction at final stage and in 1 bar. MEMU truck returns to Karlskoga production plant empty.

The key calculating values related to A4, A5-1 and A5-2 stages are presented in tables below.

Transportation of gassing agent from Gällivare to Karlskoga (A2 internal transportation)

<u> </u>					
Туре	Capacity utilization (incl. return) %	Type of vehicle	Distance* km	Fuel consumption	Value
Gassing agent- truck	50 %	EURO 5 truck	1229*	l/tkm	0,03

*One-way distance is applied since other cargo are transported on a return trip.

Transport from production plant to user (A4)

Туре	Capacity utilization (incl. return) %	Type of vehicle	Distance** km	Fuel consumption	Value				
Truck	42 %	MEMU truck	302**	l/tkm	0,04				
** Transportation distance is from production plant to user, including return trip.									

Installation stage of explosive (A5-1)

	Unit	Value
Product	kg	1
Diesel	liters	0,003
Glycol*	kg	0,00095
Lubricating water	kg	0,025

* Used only in wintertime for frost protection.

Detonation stage of explosive (A5-2)

Emission to air	Unit	Value
Carbon	kg	0
Methane	kg	0,00012
Carbon dioxide	kg	0,132
Water	kg	0,547
Nitrogen	kg	0,282
Sodium carbonate	kg	0
Carbon monoxide*	kg	0,026

* Formed in secondary reactions.

LCA: Results

Life cycle stages A1-A5 are included. The environmental impact results and LCI results related to inputs and outpust are presented per declared unit (1 kg of manufactured, installed and detonated product). Results are calculated according to the EN 15804:2012 requirements. System boundaries (X=included, MND= module not declared, MNR=module not relevant)

Pro	duct sta	age	Assem	nby stage				Use st	age			End of life stage			Beyond the system boundaries	
Raw materials	Transport	Manufacturing	Transport	AldməssA	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling-potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	С3	C4	D
х	х	х	х	х	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND

Environmental impac

Parameter	Ünit	A1-3	A4	A5-1	A5-2
GWP	kg CO ₂ -eq.	9,84E-01	3,57E-02	9,65E-03	1,35E-01
ODP	kg CFC11-eq.	1,34E-09	8,86E-18	9,67E-18	0,00E+00
POCP*	kg C ₂ H ₄ -eq.	1,16E-04	-3,50E-05	3,98E-06	7,03E-04
AP	kg SO ₂ -eq.	1,08E-03	9,85E-05	2,74E-05	0,00E+00
EP	kg PO4 ³⁻ -eq.	3,00E-04	2,40E-05	6,34E-06	1,18E-01
ADPM	kg Sb-eq.	8,54E-08	2,90E-09	8,63E-10	0,00E+00
ADPE	MJ	1,56E+01	4,82E-01	1,54E-01	0,00E+00

GWP Global warming potential; ODP Depletion potential of the stratospheric ozone layer; POCP Formation potential of tropospheric photochemical oxidants; AP Acidification potential of land and water; EP Eutrophication potential; ADPM Abiotic depletion potential for non fossil resources; ADPE Abiotic depletion potential for fossil resources

*NO has negative impact on POCP impact category. In GaBi modelling, NOx emissions of transportation are divided to NO and NO2 emissions which leads to negative emissions in A4 stage (i.e. NO emissions of transportation cause negative emissions).

Resource use

Parameter	Unit	A1-3	A4	A5-1	A5-2
RPEE	MJ	9,20E-01	2,88E-02	9,08E-03	0,00E+00
RPEM	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00
TPE	MJ	9,20E-01	2,88E-02	9,08E-03	0,00E+00
NRPE	MJ	1,46E+01	4,85E-01	1,57E-01	0,00E+00
NRPM	MJ	1,92E+00	0,00E+00	0,00E+00	0,00E+00
TRPE	MJ	1,65E+01	4,85E-01	1,57E-01	0,00E+00
SM	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00
RSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00
NRSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00
W	m ³	1,85E-03	4,85E-05	3,12E-05	0,00E+00

RPEE Renewable primary energy resources used as energy carrier; RPEM Renewable primary energy resources used as raw materials; TPE Total use of renewable primary energy resources; NRPE Non renewable primary energy resources used as energy carrier; NRPM Non renewable primary energy resources used as materials; TRPE Total use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non renewable secondary fuels; W Use of net fresh water

End of life - Waste

Parameter	Unit	A1-3	A4	A5-1	A5-2
HW	kg	1,06E-08	2,69E-08	6,72E-09	0,00E+00
NHW	kg	2,14E-03	4,09E-05	1,96E-05	0,00E+00
RW	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00

HW Hazardous waste disposed; NHW Non hazardous waste disposed; RW Radioactive waste disposed

End of life - Output flow

Parameter	Unit	A1-3	A4	A5-1	A5-2
CR	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00
MR	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00
MER	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00
EEE	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00
ETE	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00

CR Components for reuse; MR Materials for recycling; MER Materials for energy recovery; EEE Exported electric energy; ETE Exported thermal energy

Reading example: $9,0 \text{ E-03} = 9,0^{*}10^{-3} = 0,009$

Additional Norwegian requirements

Greenhous gas emission from the use of electricity in the manufacturing phase

Electricity used at Karlskoga and Gällivare production plants is modelled with basic grid mix electricity dataset. Basic grid mix electricity is modelled with Gabi Professional database. All the necessary background data is included. Country specific individual characteristics are considered. Data represents year 2016.

Data source	Amount	Unit
Gabi Professional database. Electricity grid mix, SWE.	0,037	kg CO ₂ -eq./kWh

Dangerous substances

- The product contains no substances given by the REACH Candidate list or the Norwegian priority list
- The product contains substances given by the REACH Candidate list or the Norwegian priority list that are less than 0,1 % by weight.
- The product contains dangerous substances, more then 0,1% by weight, given by the REACH Candidate List or the Norwegian Priority list, see table.
- The product contains no substances given by the REACH Candidate list or the Norwegian priority list. The product is classified as hazardous waste (Avfallsforskiften, Annex III), see table.

Name	CAS no.	Amount
Ammonium nitrate	6484-52-2	85-95%
Distillates (petroleum)	64742-52-5	1-6%
Monoethylene glycol	107-21-1	0-1,5%

Indoor environment

No tests have been carried out on the product concerning indoor climate. Not relevant.

Carbon footprint

Carbon footprint has not been worked out for the product.

Bibliography	
ISO 14025:2010	Environmental labels and declarations - Type III environmental declarations - Principles and procedures
ISO 14044:2006	Environmental management - Life cycle assessment - Requirements and guidelines
EN 15804:2012+A1:2013	Sustainability of construction works - Environmental product declaration - Core rules for the product category of construction products
ISO 21930:2007	Sustainability in building construction - Environmental declaration of building products
The Norwegian EPD Foundation. 2016.	Product-category rules, NPCR 024 version 1.0, Explosives and Initiation Systems.
LCA Consulting Oy. 2020.	LCA Study Report. Oy Forcit Ab products. Forprime 25, Fordyn, Offshore Kemiitti, Kemiitti 810, Kemiitti 510, Kemiitti 610, Kemix A. Report version 1.1.
thinkstep. 2016.	Gabi Professional database.
ISO 14001:2015	Environmental management systems — Requirements with guidance for use.
ISO 9001:2015	Quality management systems — Requirements.

	Program operator	Phone:	+47 97722020
epa-norge.no	The Norwegian EPD Foundation		
The Norwegian EPD Foundation	Post Box 5250 Majorstuen, 0303 Oslo	e-mail:	post@epd-norge.no
®	Norway	web	www.epd-norge.no
	Publisher	Phone:	+47 97722020
epa-norge.no	The Norwegian EPD Foundation		
The Norwegian EPD Foundation	Post Box 5250 Majorstuen, 0303 Oslo	e-mail:	post@epd-norge.no
®	Norway	web	www.epd-norge.no
	Owner of the declaration	Phone:	+358 20 744 0400
FORCIT EXPLOSIVES	Oy Forcit Ab	Fax	
	Veera Komulainen	e-mail:	forcit@forcit.fi
	Forcitintie 37, 10900 Hanko, Finland	web	www.forcit.fi
LCA Consulting	Author of the Life Cycle Assessment	Phone:	+358 40 762 5800
	LCA Consulting Oy	Fax	
	Emma Salminen	e-mail:	info@lca-consulting.fi
	Laserkatu 6, 53850 Lappeenranta, Finland	web	www.LCA-consulting.fi