

Environmental Product Declaration

In accordance with ISO 14025

District heating in Bergen Eviny Termo

The Norwegian EPD Foundation **Owner of the declaration:** Eviny Termo AS

Product name: District heating in Bergen area

Declared unit: 1 kWh

Product category /PCR: PCR for electricity, steam and hot/cold water generation and distribution **Program holder and publisher:** The Norwegian EPD foundation

Declaration number: NEPD-6640-5887-EN

Registration Number: NEPD-6640-5887-EN

Issue date: 21.05.2024

Valid to: 21.05.2029

General information

Product: District heating Bergen

Program holder:

The Norwegian EPD FoundationPost Box 5250 Majorstuen, 0303 Oslo, NorwayPhone:+47 23 08 80 00E-mail:post@epd-norge.no

Declaration Number: NEPD-6640-5887-EN

This declaration is based on Product Category Rules:

PCR for electricity, steam and hot/cold water generation and distribution. PCR 2007:08, version 4.2, dated 2021-04-26.

Statements:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer, life cycle assessment data and evidences.

Declared unit:

Declared unit with option:

Functional unit:

1 kWh district heat produced and delivered at customer unit.

Verification:

Independent verification of the declaration and data, according to ISO14025:2010

internal 🗌

external X

Ellen Soldal Independent verifier approved by EPD Norway

Owner of the declaration:

Eviny Termo AS Contact person: Phone: e-mail:

Håkon Hammer Eikefet +47 93 00 90 52 hakon.eikefet@eviny.no

Manufacturer: Eviny Termo AS

Place of production: Bergen, Vestland, Norway

Management system: ISO 14001

Organisation no: 979 427 697

Issue date: 21.05.2024

Valid to: 21.05.2029

Year of study: 2024

Comparability:

EPDs from other programmes than The Norwegian EPD Foundation may not be comparable.

The EPD has been worked out by:

Kaja Daviknes Sørgard, Tora Eidsmoen and Oddbjørn Dahlstrøm Andvik

Approved

Manager of EPD Norway

Product

Product description:

Eviny's district heating is mainly produced at the waste incinerator located in the southern part of Bergen, Rådal. The network route covers over 100 km, and the system also includes three energy centrals. The heat is mainly produced from waste incineration (89 %), and the peak load is covered by biofuels and flexible electricity.

Technical data:

The table below shows average produced heat for the years 2021, 2022 and 2023 in Eviny's district heating system. The table also contains information on heat produced and heat delivered to customers unit, hence the loss in the distribution system.

Table 1: Energy production per energy carrier in Eviny's district heating system in Bergen.

Energy carrier	Unit	Amount
Waste incineration	MWh	297 433
Biooil	MWh	16 690
Flexible electricity	MWh	9 064
Heat delivered to distribution network	MWh	323 187
Heat delivered to customer	MWh	281 589
Loss of heat in distribution	%	13

Market:

The Eviny district heating system serves customers in the Bergen area who are connected to the district heating network operated by Eviny Termo, from the south-west to the city centre further north as shown in the map below.

Figure 1: Map of Eviny's district heating system, with borders marked in black.

Reference service life infrastructure:

Table 2: Reference service lifetime for infrastructure included in the system.

	Reference service life	Power (total)
Energy central	60 years	
Distribution network	50 years	
Oil boiler	40 years	48 000 kW
Heat exchanger	30 years	90 MW
Oil tank	60 years	
Electrical boiler	30 years	43 000 kW

LCA: Calculation rules

Functional unit:

1 kWh of district heat delivered to customer unit. As shown in Table X there is a loss in the distribution network and therefore Eviny Termo has to produce 1,15 kWh to deliver 1 kWh of district heating to the customer.

Cut-off criteria:

All important raw materials and significant energy use is included. The production of raw materials and energy streams that contribute with small amounts (<1 %) is not included. The cut-off criterias does not apply for hazardous materials.

Allocation:

The allocation follows PCR 2007:08, v.4.2. The PCR practice the "Polluter Pays"- principle, and therefore the emissions from collection, transport and incineration of waste is allocated to the waste producer. Emissions related to necessary equipment to recover the heat is allocated to the district heat.

Data quality:

Specific data about energy, operation and infrastructure from 2021, 2022 and 2023 is gathered by Eviny for this EPD and the results are based on a three year average of operating the district heating system in Bergen. Generic data is from ecoinvent v.3.9.1, "cut-off by classification". No data is older than 10 years old.

System boundary:

The system is divided into three modules in accordance with the PCR: Upstream, Core and Downstream. The flow chart below represents the system. The input with dotted lines is not included in the main analysis in accordance with the PCR allocation rules.

Figure 2: Flow chart of the system boundaries for the district heating system.

The upstream module includes production and transport of fuels and electricity used as energy source in the core process. The core module consists of the production and decommissioning of energy centrals, boilers, heat exchangers, consumption of water and handling of operational waste. The downstream module includes the construction and decommissioning of the distribution network, in addition to the operation of the pumps in the network.

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD. Downstream heat distribution is included. This module includes infrastructure for the heat distribution network and heat loss across the distribution network.

There are no emissions related to the use of the product.

System boundaries (X=included, MNR=module not relevant)

Table 3: Overview of the included and not relevant live cycle stages related to the modules as stated in the PCR.

	Pro	duct st	age	Asse: sta	mbly ge			1	Use sta	ige			I	End of life s	tage		Beyond system boundaries
g to NS 3720 life cycle modules	Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction and demolition	Transport	Waste processing	Disposal	Reuse-Recovery-Recycling- potential
ccordin	A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Α	х	Х	х	Х	Х	х	Х	Х	х	Х	х	Х	MNR	MNR	MNR	MNR	MNR
PCR	Upsti	ream		Core			Downstream				Not relev	ant for t	he produ	ct			

LCA: Results

Eviny's district heating system is mainly based on the recovery of heat from waste incineration (89 %) and thus the main environmental burden found in this analysis occurs in the downstream module with the construction and decommissioning of the distribution network.

In the following tables the LCA results are presented per module in accordance with the PCR. The results include the losses between heat production and customer units (in the distribution network).

Environmental impact

Table 4: Results for environmental impact categories per module.

Parameter	Unit	Upstream	Core	Downstream	1 kWh heating, delivered to the customer
GWP – total	kg CO2 -eq.	-5,17E-06	2,69E-04	2,28E-03	2,55E-03
GWP - fossil	kg CO2 -eq.	1,08E-05	2,27E-04	2,20E-03	2,44E-03
GWP - biogenic	kg CO2 -eq.	-1,60E-05	4,16E-05	7,60E-05	1,02E-04
GWP - LULUC	kg CO2 -eq.	1,79E-08	8,11E-07	7,75E-06	8,58E-06
ODP	kg CFC11-eq.	4,91E-13	3,62E-12	4,99E-11	5,40E-11
POCP	kg NMVOC-eq.	4,58E-08	1,30E-06	9,06E-06	1,04E-05
AP	kg mol H+eq.	1,23E-07	2,36E-06	1,05E-05	1,30E-05
EP – fresh water	kg P-eq.	1,65E-09	1,68E-08	1,43E-07	1,62E-07
EP – marine	kg N-eq.	1,84E-07	3,18E-07	2,29E-06	2,80E-06
EP - terrestrial	Mol N-eq.	8,52E-07	4,53E-06	2,42E-05	2,96E-05
ADPM	kg Sb-eq.	1,67E-10	2,38E-08	6,81E-08	9,21E-08
ADPE	MJ	1,14E-04	2,52E-03	3,16E-02	3,43E-02
WDP	M3	6,41E-06	1,80E-04	9,64E-04	1,15E-03

GWP-total: Global Warming Potential; *GWP-fossil*: Global Warming Potential fossil fuels; *GWP-biogenic*: Global Warming Potential biogenic; *GWP-LULUC*: Global Warming Potential land use and land use change; *ODP*: Depletion potential of the stratospheric ozone layer; *POCP*: Formation potential of tropospheric photochemical oxidants; *AP* Acidification potential of land and water; *EP-freshwater*: Eutrophication potential, fraction of nutrients reaching freshwater end compartment; *EP-marine*: Eutrophication potential, fraction of nutrients reaching the sea end compartment; *EP-terrestrial*: Eutrophication potential, Accumulated Exceedance; *ADPM*: Abiotic depletion potential for non fossil resources; *ADPE*: Abiotic depletion potential

Reading example: 9,0 E-03 = 9,0*10-3 = 0,009

Resource use

Table 5: Results for resource use categories per module.

Parameter	Unit	Upstream	Core	Downstream	1 kWh heating, delivered to the customer
RPEE	MJ	3,46E-04	1,16E-03	6,42E-02	6,57E-02
RPEM	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00
TPE	MJ	3,46E-04	1,16E-03	6,42E-02	6,57E-02
NRPE	MJ	1,14E-04	2,52E-03	3,16E-02	3,43E-02
NRPM	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00

TRPE	MJ	1,14E-04	2,52E-03	3,16E-02	3,43E-02
SM	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00
RSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00
NRSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00
W	m3	1,33E-06	9,69E-06	4,60E-04	4,71E-04

RPEE Renewable primary energy resources used as energy carrier; **RPEM** Renewable primary energy resources used as raw materials; **TPE** Total use of renewable primary energy resources; **NRPE** Non renewable primary energy resources used as energy carrier; **NRPM** Non renewable primary energy resources used as materials; **TRPE** Total use of non renewable primary energy resources; **SM** Use of secondary materials; **RSF** Use of renewable secondary fuels; **NRSF** Use of non renewable secondary fuels; **W** Use of net fresh water

End of life - Waste

Table 6: Results for waste disposed per module.

Parameter	Unit	Upstream	Core	Downstream	1 kWh heating, delivered to the customer
HW	kg	9,99E-09	1,85E-06	4,18E-06	6,04E-06
NHW	kg	3,71E-06	1,09E-04	8,66E-04	9,78E-04
RW	kg	2,79E-10	5,03E-09	1,13E-07	1,18E-07

HW Hazardous waste disposed; NHW Non hazardous waste disposed; RW Radioactive waste disposed

End of life – output flow

Table 7: Results for waste output flows per module.

Parameter	Unit	Upstream	Core	Downstream	1 kWh heating, delivered to the customer
CR	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00
MR	kg	0,00E+00	2,21E-02	0,00E+00	2,21E-02
MER	kg	0,00E+00	5,55E-02	0,00E+00	5,55E-02
EEE	MJ	INA	INA	INA	INA
ETE	MJ	INA	INA	INA	INA

CR Components for reuse; **MR** Materials for recycling; **MER** Materials for energy recovery; **EEE** Exported electric energy; **ETE** Exported thermal energy.

INA: Indicator not assessed.

Reading example: 9,0E-03 = 9,0*10-3= 0,009

Additional requirements

Greenhous gas emission from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Data source	Amount	Unit
Low voltage for market, NO	Ecoinvent 3.9.1	38,9	g CO2 eq./kWh
Low voltage residual mix for market, NO	Ecoinvent 3.9.1	521	g CO2 eq./kWh

Emission factor for the NO market mix (Low voltage for market, NO) is used for upstream, core and downstream processes.

Electricity mix	Upstream [kWh/FU]	Core [kWh/FU]	Downstream [kWh/FU]	GWP _{Total} [g CO2 ekv/ kWh]	SUM [kg CO2 ekv/ FU]
Low voltage for market, NO	2,8E-05	1,49E-04	1,35E-05	38,9	7,39E-06
Low voltage residual mix for market, NO	2,8E-05	1,49E-04	1,35E-05	521	9,90E-05

Dangerous substances

The product contains no substances given by the REACH Candidate list or the Norwegian priority list.

Indoor environment

Not relevant.

Bibliography

ISO 14025:2010	Environmental labels and declarations - Type III environmental declarations - Principles and procedures
ISO 14044:2006	Environmental management - Life cycle assessment - Requirements and guidelines
Environdec, 2021	ELECTRICITY, STEAM AND HOT WATER GENERATION AND DISTRIBUTIONPRODUCT CATEGORY CLASSIFICATION: UN CPC 171, 173, 2007:08, version 4.2. E. International, EPD International
Sørgard, Kaja D., 2024	Eviny district heating LCA report, by Asplan Viak AS, Bergen,

Norway 2024.

	Program Operator	tlf	+47 23 08 80 00
C epd-norway	The Norwegian EPD Foundation		
Global Program Operator	Post Box 5250 Majorstuen, 0303 Oslo	e-post:	post@epd-norge.no
	Norway	web	www.epd-norge.no
	Publisher	tlf	+47 23 08 80 00
C epd-norway	The Norwegian EPD Foundation		
Global Program Operator	Post Box 5250 Majorstuen, 0303 Oslo	e-post:	post@epd-norge.no
	Norway	web	www.epd-norge.no
	Owner of the declaration	tlf	+47 55 57 00 00
	Eviny Termo AS		
Courty	Postboks 7050, 5020 Bergen	e-post:	hei@eviny.no
	Norway	web	www.eviny.no
	Author of the life cycle assesment	tlf	+47 92 86 99 15
asplan 🥒 🔪	Asplan Viak AS, by Kaja Daviknes Sørgard		
viak	Markeveien 1b, 5012 Bergen	e-post:	kaja.sorgard@asplanviak.no
		web	www.asplanviak.no
ECO PLATFORM			
EPD	ECO Platform	web	www.eco-platform.org
VERIFIED	ECO Portal	web	<u>ECO Portal</u>