



# Environmental product declaration

in accordance with ISO 14025 and EN 15804+A2

HHFlex 08.04 PHE





The Norwegian EPD Foundation

# Owner of the declaration:

Systemair B.V.

#### **Product:**

HHFlex 08.04 PHE

## **Declared unit:**

1 pc

# This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core PCR

NPCR 030:2021 Part B for ventilation components

# Program operator:

The Norwegian EPD Foundation

# **Declaration number:**

NEPD-6682-5722-EN

# Registration number:


NEPD-6682-5722-EN

**Issue date:** 27.05.2024

Valid to: 27.05.2029

## **EPD** software:

LCAno EPD generator ID: 197257



# **General information**

## **Product**

HHFlex 08.04 PHE

## **Program operator:**

The Norwegian EPD Foundation
Post Box 5250 Majorstuen, 0303 Oslo, Norway

Phone: +47 977 22 020 web: www.epd-norge.no

# **Declaration number:**

NEPD-6682-5722-EN

#### This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR 030:2021 Part B for ventilation components

## Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

#### Declared unit:

1 pcs HHFlex 08.04 PHE

#### **Declared unit with option:**

A1-A3,A4,C1,C2,C3,C4,D

#### Functional unit:

HHFlex air handling units have a modular platform design, enabling you to tailor the unit to your project, based on required airflow and specific demands. Ideal for hospitals, industry, marine and offshore.

#### General information on verification of EPD from EPD tools:

Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Verification of each EPD is made according to EPD-Norway's guidelines for verification and approval requiring that tools are i) integrated into the company's environmental management system, ii) the procedures for use of the EPD tool are approved by EPD-Norway, and iii) the process is reviewed annually by an independent third party verifier. See Appendix G of EPD-Norway's General Programme Instructions for further information on EPD tools

# Verification of EPD tool:

Independent third party verification of the EPD tool, background data and test-EPD in accordance with EPDNorway's procedures and guidelines for verification and approval of EPD tools.

Third party verifier:

Alexander Borg, Asplan Viak AS

(no signature required)

#### Owner of the declaration:

Systemair B.V. Contact person: Andy Bijmans Phone: +31 (0)85 00 66 200 e-mail: info@systemair.nl

#### Manufacturer:

Systemair B.V.

#### Place of production:

Systemair B.V. Zanddonkweg 7A 5144NX Waalwijk, Netherlands

# Management system:

ISO 9001

## Organisation no:

N1001219947801

#### Issue date:

27.05.2024

#### Valid to:

27.05.2029

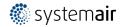
## Year of study:

2022

# **Comparability:**

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

#### **Development and verification of EPD:**


The declaration is created using EPD tool lca.tools ver EPD2022.03, developed by LCA.no. The EPD tool is integrated in the company's management system and has been approved by EPD Norway.

Developer of EPD: Anthony Musters

Reviewer of company-specific input data and EPD: Andy Bijmans

# **Approved:**

Håkon Hauan Managing Director of EPD-Norway



# **Product**

# **Product description:**

This EDP is generated for the HHFlex air handling unit size 08.04 with a Plate Heat Exchanger configuration. [PHE]

## **Product specification**

The HHFlex is manufactured with high-quality components, depending on the selected customizable configuration:

Heat recovery systems

Humidifiers

**Filters** 

Heat exchangers (heating and/or cooling)

Sound attenuators

| Materials                                       | kg      | %      |
|-------------------------------------------------|---------|--------|
| Adhesive                                        | 1,80    | 0,13   |
| Cardboard                                       | 0,08    | 0,01   |
| Electronic - Wire                               | 40,00   | 2,82   |
| Filter, mineral based                           | 11,00   | 0,78   |
| Hydronic coil (50% AL, 50%CU)                   | 66,00   | 4,65   |
| Insulation, Mineral based                       | 91,60   | 6,45   |
| Metal - Aluminium                               | 135,61  | 9,56   |
| Metal - Brass                                   | 0,30    | 0,02   |
| Metal - Copper                                  | 0,80    | 0,06   |
| Metal - Galvanized Steel                        | 803,70  | 56,63  |
| Metal - Stainless steel                         | 61,15   | 4,31   |
| Metal - Steel                                   | 10,18   | 0,72   |
| Metal - Steel with aluzinc coating              | 10,30   | 0,73   |
| Motor                                           | 78,00   | 5,50   |
| Plastic - Acrylonitrile butadiene styrene (ABS) | 7,97    | 0,56   |
| Plastic - Polyamide                             | 2,50    | 0,18   |
| Plastic - Polyethylene                          | 0,12    | 0,01   |
| Plastic - Polypropylene (PP)                    | 12,48   | 0,88   |
| Plastic - Polyvinyl chloride (PVC)              | 33,48   | 2,36   |
| Plastics                                        | 0,90    | 0,06   |
| Rubber, synthetic                               | 1,16    | 0,08   |
| Wood                                            | 50,00   | 3,52   |
| Total                                           | 1419,13 | 100,00 |
| Packaging                                       | kg      | %      |
| Packaging - Paper                               | 0,04    | 1,06   |
| Packaging - Plastic                             | 3,91    | 98,94  |
| Total incl. packaging                           | 1423,08 | 100,00 |

## **Technical data:**

Please refer to our product website for additional information.

# Market:

Europe

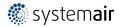
# Reference service life, product

Dependent on the application of the product

# Reference service life, building or construction works

Not declared

# **LCA: Calculation rules**


#### **Declared unit:**

1 pcs HHFlex 08.04 PHE

# **Cut-off criteria:**

All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

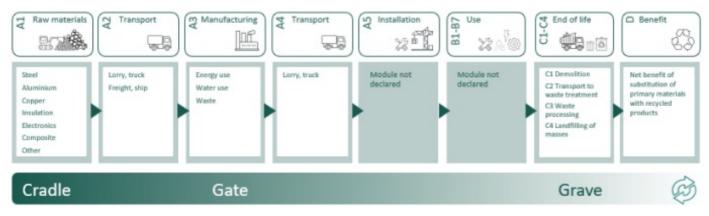
# Allocation:



The allocation is made in accordance with the provisions of EN 15804. Energy, water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

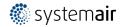
# Data quality:

Specific data for the product composition are provided by the manufacturer. The data represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on EPDs according to EN 15804 and different LCA databases. The data quality of the raw materials in A1 is presented in the table below.


| laterials                                     | Source                              | Data quality             | Year |
|-----------------------------------------------|-------------------------------------|--------------------------|------|
| dhesive                                       | ecoinvent 3.6                       | Database                 | 2019 |
| ardboard                                      | ecoinvent 3.6                       | database                 | 2019 |
| ectronic - Wire                               | Product composition + ecoinvent 3.6 | Supplier data + database | 2019 |
| lter, mineral based                           | ecoinvent 3.6                       | Database                 | 2019 |
| ydronic coil (50% AL, 50%CU)                  | ecoinvent 3.6                       | Database                 | 2019 |
| sulation, Mineral based                       | ecoinvent 3.6                       | Database                 | 2019 |
| Ietal - Aluminium                             | ecoinvent 3.6                       | Database                 | 2019 |
| letal - Aluminium                             | Modified ecoinvent 3.6              | Database                 | 2019 |
| letal - Brass                                 | ecoinvent 3.6                       | Database                 | 2019 |
| letal - Copper                                | ecoinvent 3.6                       | Database                 | 2019 |
| letal - Galvanized Steel                      | Modified ecoinvent 3.6              | Database                 | 2019 |
| letal - Stainless steel                       | Modified ecoinvent 3.6              | Database                 | 2019 |
| letal - Steel                                 | ecoinvent 3.6                       | Database                 | 2019 |
| letal - Steel with aluzinc coating            | Modified ecoinvent 3.6              | Database                 | 2019 |
| lotor                                         | ecoinvent 3.6                       | Database                 | 2019 |
| ackaging - Paper                              | ecoinvent 3.6                       | Database                 | 2019 |
| ackaging - Plastic                            | ecoinvent 3.6                       | Database                 | 2019 |
| astic - Acrylonitrile butadiene styrene (ABS) | ecoinvent 3.6                       | Database                 | 2019 |
| astic - Polyamide                             | ecoinvent 3.6                       | Database                 | 2019 |
| astic - Polyethylene                          | ecoinvent 3.6                       | Database                 | 2019 |
| astic - Polypropylene (PP)                    | ecoinvent 3.6                       | Database                 | 2019 |
| astic - Polyvinyl chloride (PVC)              | ecoinvent 3.6                       | Database                 | 2019 |
| astics                                        | ecoinvent 3.6                       | Database                 | 2019 |
| ubber, synthetic                              | ecoinvent 3.6                       | Database                 | 2019 |
|                                               |                                     |                          |      |



# System boundaries (X=included, MND=module not declared, MNR=module not relevant)


| Р                | roduct stag | ge            |           | uction<br>ion stage |     |             |        | Use stage   |                         |                              |                          |                                   | End of I  | ife stage           |          | Beyond the system boundaries           |
|------------------|-------------|---------------|-----------|---------------------|-----|-------------|--------|-------------|-------------------------|------------------------------|--------------------------|-----------------------------------|-----------|---------------------|----------|----------------------------------------|
| Raw<br>materials | Transport   | Manufacturing | Transport | Assembly            | Use | Maintenance | Repair | Replacement | Refu <i>r</i> b ishment | Operational<br>energy<br>use | Operational<br>water use | De-<br>construction<br>demolition | Transport | Waste<br>processing | Disposal | Reuse-Recovery-<br>Recycling-potential |
| A1               | A2          | A3            | A4        | A5                  | B1  | B2          | В3     | B4          | B5                      | В6                           | В7                       | C1                                | C2        | C3                  | C4       | D                                      |
| Χ                | X           | Χ             | Χ         | MND                 | MND | MND         | MND    | MND         | MND                     | MND                          | MND                      | X                                 | Χ         | X                   | Χ        | X                                      |

# System boundary:



## Additional technical information:

Complete project specific technical information and documentation is generated using our online product selection software. Please refer to the Systemair website for more information.



# LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

For A4 a generic transportation distance (EURO6 truck) of 300 km is declared. True transportation distance can be provided in project specific EPD.


For C2 a generic transportation distance (EURO6 truck) of 50 km is declared. True transportation distance can be provided in project specific EPD.

| Transport from production place to user (A4)                                   | Capacity utilisation<br>(incl. return) % | Distance (km) | Fuel/Energy Consumption | Unit  | Value<br>(Liter/tonne) |
|--------------------------------------------------------------------------------|------------------------------------------|---------------|-------------------------|-------|------------------------|
| Truck, 16-32 tonnes, EURO 6 (km)                                               | 36,7 %                                   | 300           | 0,043                   | l/tkm | 12,90                  |
| De-construction demolition (C1)                                                | Unit                                     | Value         |                         |       |                        |
| Demolition of building per kg of ventilation product (kg)                      | kg/DU                                    | 1423,00       |                         |       |                        |
| Transport to waste processing (C2)                                             | Capacity utilisation<br>(incl. return) % | Distance (km) | Fuel/Energy Consumption | Unit  | Value<br>(Liter/tonne) |
| Truck, 16-32 tonnes, EURO 6 (km)                                               | 36,7 %                                   | 50            | 0,043                   | l/tkm | 2,15                   |
| Waste processing (C3)                                                          | Unit                                     | Value         |                         |       |                        |
| Materials to recycling (kg)                                                    | kg                                       | 1074,86       |                         |       |                        |
| Waste treatment per kg bulk waste, excluding reinforcement, sorting plant (kg) | kg                                       | 78,00         |                         |       |                        |
| Waste treatment per kg Hazardous waste, incineration (kg)                      | kg                                       | 1,80          |                         |       |                        |
| Waste treatment per kg Paperboard, incineration (kg)                           | kg                                       | 0,08          |                         |       |                        |
| Waste treatment per kg plastic, industrial electronics, incineration (kg)      | kg                                       | 3,99          |                         |       |                        |
| Waste treatment per kg Plastics, from incineration (kg)                        | kg                                       | 1,70          |                         |       |                        |
| Waste treatment per kg Polyethylene (PE),<br>incineration (kg)                 | kg                                       | 0,06          |                         |       |                        |
| Waste treatment per kg Polypropylene (PP), incineration (kg)                   | kg                                       | 6,24          |                         |       |                        |
| Waste treatment per kg Polyvinylchloride (PVC), incineration (kg)              | kg                                       | 16,74         |                         |       |                        |
| Waste treatment per kg Rubber, incineration (kg)                               | kg                                       | 1,16          |                         |       |                        |
| Waste treatment per kg wire plastic, municipal incineration (kg)               | kg                                       | 8,80          |                         |       |                        |
| Waste treatment per kg Wood, incineration (kg)                                 | kg                                       | 50,00         |                         |       |                        |



| Disposal (C4)                                                                                                               | Unit | Value  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------|------|--------|--|--|
| Landfilling of ashes from incineration of<br>Paperboard, process per kg ashes and residues<br>(kg)                          | kg   | 0,00   |  |  |
| Landfilling of ashes from incineration of Plastics, process per kg ashes and residues (kg)                                  | kg   | 0,04   |  |  |
| Landfilling of ashes from incineration of<br>Polyethylene (PE), process per kg ashes and<br>residues (kg)                   | kg   | 0,00   |  |  |
| Landfilling of ashes from incineration of<br>Polypropylene (PP), process per kg ashes and<br>residues (kg)                  | kg   | 0,19   |  |  |
| Landfilling of ashes from incineration of<br>Polyvinylchloride (PVC), process per kg ashes and<br>residues (kg)             | kg   | 2,67   |  |  |
| Landfilling of ashes from incineration of Rubber, process per kg ashes and residues (kg)                                    | kg   | 0,06   |  |  |
| Landfilling of ashes from incineration of Wood, process per kg ashes and residues (kg)                                      | kg   | 1,29   |  |  |
| Landfilling of ashes from incineration per kg<br>Hazardous waste, process per kg ashes and<br>residues (kg)                 | kg   | 0,34   |  |  |
| Landfilling of ashes from incineration per kg<br>plastic, industrial electronics, process per kg ashes<br>and residues (kg) | kg   | 0,27   |  |  |
| Landfilling of ashes from incineration per kg wire plastic, process per kg ashes and residues (kg)                          | kg   | 1,31   |  |  |
| Waste, aluminium, to landfill (kg)                                                                                          | kg   | 12,29  |  |  |
| Waste, brass, to landfill (kg)                                                                                              | kg   | 0,03   |  |  |
| Waste, copper, to landfill (kg)                                                                                             | kg   | 6,87   |  |  |
| Waste, mineral wool, to landfil (kg)                                                                                        | kg   | 102,60 |  |  |
| Waste, plastic, mixture, to landfill (kg)                                                                                   | kg   | 37,53  |  |  |
| Waste, stainless steel, to landfill (kg)                                                                                    | kg   | 6,12   |  |  |
| Waste, steel, to landfill (kg)                                                                                              | kg   | 88,27  |  |  |

| Benefits and loads beyond the system boundaries (D)              | Unit | Value   |  |  |
|------------------------------------------------------------------|------|---------|--|--|
| Substitution of electricity (MJ)                                 | MJ   | 116,09  |  |  |
| Substitution of primary aluminium with net scrap (kg)            | kg   | 41,82   |  |  |
| Substitution of primary Brass with net scrap (kg)                | kg   | 0,14    |  |  |
| Substitution of primary copper with net scrap (kg)               | kg   | 50,28   |  |  |
| Substitution of primary other ferrous metals with net scrap (kg) | kg   | -6,12   |  |  |
| Substitution of primary steel with net scrap (kg)                | kg   | 109,29  |  |  |
| Substitution of thermal energy, district heating (MJ)            | МЈ   | 1756,39 |  |  |



#### **LCA: Results**

The LCA results are presented below for the declared unit defined on page 2 of the EPD document.

| Environ  | mental impact                    |                        |           |          |          |          |          |          |           |
|----------|----------------------------------|------------------------|-----------|----------|----------|----------|----------|----------|-----------|
|          | Indicator                        | Unit                   | A1-A3     | A4       | C1       | C2       | C3       | C4       | D         |
|          | GWP-total                        | kg CO <sub>2</sub> -eq | 5,97E+03  | 6,98E+01 | 1,88E+00 | 1,16E+01 | 1,77E+02 | 6,66E+00 | -6,26E+02 |
|          | GWP-fossil                       | kg CO <sub>2</sub> -eq | 5,96E+03  | 6,97E+01 | 1,88E+00 | 1,16E+01 | 9,35E+01 | 6,66E+00 | -6,16E+02 |
|          | GWP-biogenic                     | kg CO <sub>2</sub> -eq | -4,26E+01 | 2,89E-02 | 3,52E-04 | 4,81E-03 | 8,35E+01 | 2,63E-03 | -2,35E+00 |
|          | GWP-luluc                        | kg CO <sub>2</sub> -eq | 4,96E+01  | 2,48E-02 | 1,48E-04 | 4,14E-03 | 4,96E-03 | 6,09E-04 | -7,58E+00 |
| Ö        | ODP                              | kg CFC11 -eq           | 4,97E-04  | 1,58E-05 | 4,06E-07 | 2,63E-06 | 2,05E-06 | 6,90E-07 | -7,42E-01 |
| CEV .    | АР                               | mol H+ -eq             | 5,69E+01  | 2,00E-01 | 1,96E-02 | 3,34E-02 | 4,81E-02 | 1,73E-02 | -2,34E+01 |
| -        | EP-FreshWater                    | kg P -eq               | 4,04E-01  | 5,57E-04 | 6,83E-06 | 9,29E-05 | 2,52E-04 | 3,32E-05 | -1,59E-01 |
| -        | EP-Marine                        | kg N -eq               | 6,38E+00  | 3,97E-02 | 8,66E-03 | 6,61E-03 | 1,50E-02 | 1,04E-02 | -1,29E+00 |
| <b>a</b> | EP-Terrestial                    | mol N -eq              | 1,21E+02  | 4,44E-01 | 9,51E-02 | 7,39E-02 | 1,60E-01 | 6,60E-02 | -1,79E+01 |
|          | POCP                             | kg NMVOC -eq           | 2,50E+01  | 1,70E-01 | 2,61E-02 | 2,83E-02 | 4,22E-02 | 1,97E-02 | -5,33E+00 |
|          | ADP-minerals&metals <sup>1</sup> | kg Sb-eq               | 2,01E+00  | 1,93E-03 | 2,88E-06 | 3,21E-04 | 1,26E-04 | 3,73E-05 | -1,18E-01 |
|          | ADP-fossil <sup>1</sup>          | MJ                     | 7,53E+04  | 1,05E+03 | 2,58E+01 | 1,76E+02 | 8,69E+01 | 5,01E+01 | -6,90E+03 |
| <u></u>  | WDP <sup>1</sup>                 | $m^3$                  | 7,26E+05  | 1,02E+03 | 5,49E+00 | 1,70E+02 | 1,14E+03 | 3,04E+02 | -2,02E+05 |

GWP-total = Global Warming Potential total; GWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment: EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption

# Remarks to environmental impacts

This air handling unit uses electric energy for fan drive and recovers thermal energy via a plate heat exchanger. These factors are highly project specific and vary depending on:

- o Climate / outdoor conditions
- o Air flow
- o External pressure
- o Supply temperature
- o Extract temperature
- o Operating hours
- o Electricity origin
- o Etc.

Energy use and heat recovery are fundamental in determining the environmental impact of this product and must be calculated with project specific values. This can be done using our AHU calculation software Blizzard, please refer to our website for more information.

<sup>&</sup>quot;Reading example: 9,0 E-03 = 9,0\*10-3 = 0,009"

<sup>\*</sup>INA Indicator Not Assessed

<sup>1.</sup> The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator



| Additional           | environmental i     | mpact indicators  |          |          |          |          |          |          |           |
|----------------------|---------------------|-------------------|----------|----------|----------|----------|----------|----------|-----------|
| lı lı                | ndicator            | Unit              | A1-A3    | A4       | C1       | C2       | C3       | C4       | D         |
|                      | PM                  | Disease incidence | 4,94E-04 | 4,27E-06 | 5,19E-07 | 7,12E-07 | 3,83E-07 | 3,06E-07 | -8,09E-05 |
|                      | IRP <sup>2</sup>    | kgBq U235 -eq     | 2,51E+02 | 4,61E+00 | 1,11E-01 | 7,68E-01 | 3,90E-01 | 2,30E-01 | -2,24E+01 |
| 4                    | ETP-fw <sup>1</sup> | CTUe              | 3,42E+05 | 7,82E+02 | 1,41E+01 | 1,30E+02 | 2,89E+03 | 7,71E+03 | -1,99E+05 |
| 48.*<br>*** <u>B</u> | HTP-c <sup>1</sup>  | CTUh              | 3,15E-05 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 1,42E-08 | 1,62E-07 | -4,13E-06 |
| & B                  | HTP-nc <sup>1</sup> | CTUh              | 4,37E-04 | 8,54E-07 | 1,28E-08 | 1,42E-07 | 9,05E-07 | 1,10E-05 | -2,25E-04 |
|                      | SQP <sup>1</sup>    | dimensionless     | 2,80E+04 | 7,37E+02 | 3,28E+00 | 1,23E+02 | 3,06E+01 | 1,48E+02 | -3,45E+03 |

PM = Particulate Matter emissions; IRP = Ionizing radiation – human health; ETP-fw = Eco toxicity – freshwater; HTP-c = Human toxicity – cancer effects; HTP-nc = Human toxicity – non cancer effects; SQP = Potential Soil Quality Index (dimensionless)

<sup>&</sup>quot;Reading example: 9,0 E-03 = 9,0\*10-3 = 0,009" \*INA Indicator Not Assessed

<sup>1.</sup> The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

<sup>2.</sup> This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.



| Resource use |          |                |          |          |          |          |           |          |           |
|--------------|----------|----------------|----------|----------|----------|----------|-----------|----------|-----------|
|              | ndicator | Unit           | A1-A3    | A4       | C1       | C2       | C3        | C4       | D         |
|              | PERE     | MJ             | 1,43E+04 | 1,51E+01 | 1,40E-01 | 2,52E+00 | 1,11E+01  | 1,87E+00 | -3,12E+03 |
|              | PERM     | MJ             | 7,01E+02 | 0,00E+00 | 0,00E+00 | 0,00E+00 | -7,01E+02 | 0,00E+00 | 0,00E+00  |
| Ţ,           | PERT     | MJ             | 1,50E+04 | 1,51E+01 | 1,40E-01 | 2,52E+00 | -6,89E+02 | 1,87E+00 | -3,12E+03 |
|              | PENRE    | MJ             | 7,43E+04 | 1,05E+03 | 2,58E+01 | 1,76E+02 | 8,69E+01  | 5,01E+01 | -6,90E+03 |
| Å            | PENRM    | MJ             | 2,21E+03 | 0,00E+00 | 0,00E+00 | 0,00E+00 | -1,73E+03 | 0,00E+00 | 0,00E+00  |
| IA           | PENRT    | MJ             | 7,65E+04 | 1,05E+03 | 2,58E+01 | 1,76E+02 | -1,64E+03 | 5,01E+01 | -6,90E+03 |
|              | SM       | kg             | 1,31E+02 | 0,00E+00 | 1,27E-02 | 0,00E+00 | 8,60E-04  | 9,17E-03 | 3,51E+01  |
| 2            | RSF      | MJ             | 2,89E+02 | 5,40E-01 | 3,44E-03 | 9,00E-02 | 2,12E-01  | 4,11E-02 | 6,57E+00  |
|              | NRSF     | MJ             | 3,05E+02 | 1,93E+00 | 5,06E-02 | 3,22E-01 | 9,14E-04  | 5,42E-01 | 7,58E+01  |
| <b>&amp;</b> | FW       | m <sup>3</sup> | 9,15E+01 | 1,13E-01 | 1,33E-03 | 1,88E-02 | 1,62E+00  | 5,66E-02 | -1,36E+01 |

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non renewable primary energy resources used as raw materials; PENRM = Use of non renewable primary energy resources; SM = Use of secondary materials; PENRM = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

<sup>&</sup>quot;Reading example: 9,0 E-03 = 9,0\*10-3 = 0,009" \*INA Indicator Not Assessed



| End of life - Waste |         |      |          |          |          |          |          |          |           |
|---------------------|---------|------|----------|----------|----------|----------|----------|----------|-----------|
| Inc                 | dicator | Unit | A1-A3    | A4       | C1       | C2       | C3       | C4       | D         |
|                     | HWD     | kg   | 4,01E+01 | 5,44E-02 | 7,60E-04 | 9,06E-03 | 9,97E-05 | 1,96E+00 | -3,98E-01 |
| Ū                   | NHWD    | kg   | 2,06E+03 | 5,13E+01 | 3,06E-02 | 8,55E+00 | 1,80E+00 | 2,59E+02 | -2,16E+02 |
| ā                   | RWD     | kg   | 2,41E-01 | 7,18E-03 | 1,79E-04 | 1,20E-03 | 1,01E-05 | 1,91E-04 | -2,10E-02 |

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

"Reading example: 9,0 E-03 = 9,0\*10-3 = 0,009" \*INA Indicator Not Assessed

| End of life - Output flo | w   |      |          |          |          |          |          |          |           |
|--------------------------|-----|------|----------|----------|----------|----------|----------|----------|-----------|
| Indicat                  | or  | Unit | A1-A3    | A4       | C1       | C2       | C3       | C4       | D         |
| @D                       | CRU | kg   | 0,00E+00  |
| &D                       | MFR | kg   | 6,73E+01 | 0,00E+00 | 1,25E-02 | 0,00E+00 | 1,07E+03 | 8,06E-03 | -1,38E+00 |
| DØ                       | MER | kg   | 4,81E+01 | 0,00E+00 | 3,86E-05 | 0,00E+00 | 8,89E+01 | 1,45E-04 | -1,82E-01 |
| <b>₹</b> D               | EEE | MJ   | 3,76E+01 | 0,00E+00 | 1,32E-04 | 0,00E+00 | 8,14E+01 | 5,72E-03 | -4,48E-01 |
| DØ                       | EET | MJ   | 5,69E+02 | 0,00E+00 | 2,00E-03 | 0,00E+00 | 1,23E+03 | 8,65E-02 | -6,78E+00 |

CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported energy electrical; EET = Exported energy thermal

"Reading example: 9,0 E-03 = 9,0\*10-3 = 0,009" \*INA Indicator Not Assessed

| Biogenic Carbon Content |                     |  |  |  |  |  |  |
|-------------------------|---------------------|--|--|--|--|--|--|
| Unit                    | At the factory gate |  |  |  |  |  |  |
| kg C                    | 2,28E+01            |  |  |  |  |  |  |
| kg C                    | 0,00E+00            |  |  |  |  |  |  |
|                         | kg C                |  |  |  |  |  |  |

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2



# **Additional requirements**

## Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

| Electricity mix                | Source        | Amount | Unit         |
|--------------------------------|---------------|--------|--------------|
| Electricity, Netherlands (kWh) | ecoinvent 3.6 | 651,66 | g CO2-eq/kWh |

#### **Dangerous substances**

The product contains no substances on the REACH Candidate list at or above 100 ppm, 0,01 % by weight.

#### **Indoor environment**

The air handling unit is an essential component for obtaining good thermal and atmospheric conditions. An optimally sized and well-functioning AHU will have direct positive effects on human health, wellbeing, and productivity and is a crucial prerequisite for achieving a healthy indoor environment.

# **Additional Environmental Information**

| Additional environmental impact indicators required in NPCR Part A for construction products |                        |          |          |          |          |          |          |           |  |
|----------------------------------------------------------------------------------------------|------------------------|----------|----------|----------|----------|----------|----------|-----------|--|
| Indicator                                                                                    | Unit                   | A1-A3    | A4       | C1       | C2       | C3       | C4       | D         |  |
| GWPIOBC                                                                                      | kg CO <sub>2</sub> -eq | 6,05E+03 | 6,98E+01 | 1,88E+00 | 1,16E+01 | 9,37E+01 | 6,70E+00 | -6,01E+02 |  |

GWP-IOBC: Global warming potential calculated according to the principle of instantaneous oxidation. In order to increase the transparency of biogenic carbon contribution to climate impact, the indicator GWP-IOBC is required as it declares climate impacts calculated according to the principle of instantaneous oxidation. GWP-IOBC is also referred to as GWP-GHG in context to Swedish public procurement legislation.



# **Bibliography**

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures.

ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines.

EN 15804:2012 + A2:2019 Environmental product declaration - Core rules for the product category of construction products.

ISO 21930:2017 Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products.

ecoinvent v3, Allocation, cut-off by classification, Swiss Centre of Life Cycle Inventories.

Iversen et al., (2021) eEPD v2021.09 Background information for EPD generator tool system verification, LCA.no Report number: 07.21 Graafland and Iversen (2022) EPD generator for NPCR 030 Ventilation components, Background information for EPD generator application and LCA data, LCA.no report number: 12.22

NPCR Part A: Construction products and services. Ver. 2.0. April 2021, EPD-Norge.

NPCR 030 Part B for Ventilation components, Ver. 1.0, 18.05.2021, EPD Norway.

|                         | Program operator and publisher              | Phone:  | +47 977 22 020       |
|-------------------------|---------------------------------------------|---------|----------------------|
| © epd-norway            | The Norwegian EPD Foundation                |         | post@epd-norge.no    |
| Global Program Operator | Post Box 5250 Majorstuen, 0303 Oslo, Norway | web:    | www.epd-norge.no     |
| • • • • •               | Owner of the declaration:                   | Phone:  | +31 (0)85 00 66 200  |
| system <b>air</b>       | Systemair B.V.                              | e-mail: | info@systemair.nl    |
| w. systemism            | Zanddonkweg 7A, 5144NX Waalwijk             | web:    | www.systemair.com/nl |
|                         | Author of the Life Cycle Assessment         | Phone:  | +47 916 50 916       |
| (LCA)                   | LCA.no AS                                   | e-mail: | post@lca.no          |
| .no                     | Dokka 6B, 1671                              | web:    | www.lca.no           |
|                         | Developer of EPD generator                  | Phone:  | +47 916 50 916       |
| (LCA)                   | LCA.no AS                                   | e-mail: | post@lca.no          |
|                         | Dokka 6B,1671 Kråkerøy                      | web:    | www.lca.no           |
| ECO PLATFORM            | ECO Platform                                | web:    | www.eco-platform.org |
| VERIFIED                | ECO Portal                                  | web:    | ECO Portal           |