

Environmental product declaration

in accordance with ISO 14025 and EN 15804+A2

Ventiflex 6212 FR

The Norwegian EPD Foundation

Owner of the declaration:

Protan AS

Produkt:

Ventiflex 6212 FR

Declared unit:

1 m²

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core

NPCR 022:2018 Part B for Roof waterproofing

Program operator:

The Norwegian EPD Foundation

Declaration number:

NEPD-7057-6453-EN

Registration number:

NEPD-7057-6453-EN

Issue date: 11.07.2024

Valid to: 11.07.2029

EPD software:

LCAno EPD generator ID: 56664

General information

Product:

Ventiflex 6212 FR

Program operator:

The Norwegian EPD Foundation Post Box 5250 Majorstuen, 0303 Oslo, Norway

Phone: +47 977 22 020 web: www.epd-norge.no

Declaration number:

NEPD-7057-6453-EN

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR 022:2018 Part B for Roof waterproofing

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit:

1 m2 Ventiflex 6212 FR

Declared unit (cradle to gate) with option:

A1-A3,A4,A5,C1,C2,C3,C4,D

Functional unit:

The functional unit applies to 1 square meter of Ventiflex fabric prior to ducting fabrication. The fabrication of ducting is not included in stage A3. The installation at the construction site has not been modelled in stage A5.

General information on verification of EPD from EPD tools:

Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Verification of each EPD is made according to EPD-Norway's guidelines for verification and approval requiring that tools are i) integrated into the company's environmental management system, ii) the procedures for use of the EPD tool are approved by EPD-Norway, and iii) the process is reviewed annually by an independent third party verifier. See Appendix G of EPD-Norway's General Programme Instructions for further information on EPD tools

Verification of EPD tool:

Independent third party verification of the EPD tool, background data and test-EPD in accordance with EPDNorway's procedures and guidelines for verification and approval of EPD tools.

Third party verifier:

Elisabet Amat, GREENIZE projects

(no signature required)

Owner of the declaration:

Protan AS Contact person: Lars Anisdahl Phone: +47 94 01 78 58 e-mail: lars.anisdahl@protan.no

Manufacturer:

Protan AS

Place of production:

Protan AS Baches vei 1 3413 Lier, Norway

Management system:

ISO 9001 (95-OSL-AQ-6343) og ISO 14001 (NO 97-OSL-SYMI-8015)

Organisation no:

983 599 060

Issue date:

11.07.2024

Valid to:

11.07.2029

Year of study:

2023

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

Development and verification of EPD:

The declaration is created using EPD tool lca.tools ver EPD2022.03, developed by LCA.no. The EPD tool is integrated in the company's management system, and has been approved by EPD Norway. NEPDT10

Developer of EPD: Afsaneh Mohammadi

Reviewer of company-specific input data and EPD: Lars Anisdahl

Approved:

Håkon Hauan

Managing Director of EPD-Norway

Product:

Product description:

Protan Ventiflex systems secure sufficient air flow for tunnels and mines, providing a safe working environment. The systems consist of flexible ducting fabric, couplings and other accessories. On site, Ventiflex is connected to a high power fan, blowing air into the whole underground construction.

Product specification

Protan Ventiflex fabrics consist of a polyester-based textile that is coated with a thermoplastic compound. This is based on plasticised PVC with additives to secure proper fire protection and desired product life time.

Materials	kg	%
Chemical	0,10	16,24
E-PVC	0,03	4,76
Fire-, heat- and UV-stabilizers	0,02	2,84
Pigments	0,00	0,49
Plasticizer	0,15	24,15
Polyester textile	0,12	20,34
S-PVC	0,19	31,17
Total	0,61	100,00

Technical data:

PDS Ventiflex 6212 FR-eng

Market:

Global Market

Reference service life, product

This varies with the application, ranging from for example 1-20 years.

Reference service life, building

N/A

LCA: Calculation rules

Declared unit:

1 m2 Ventiflex 6212 FR

Cut-off criteria:

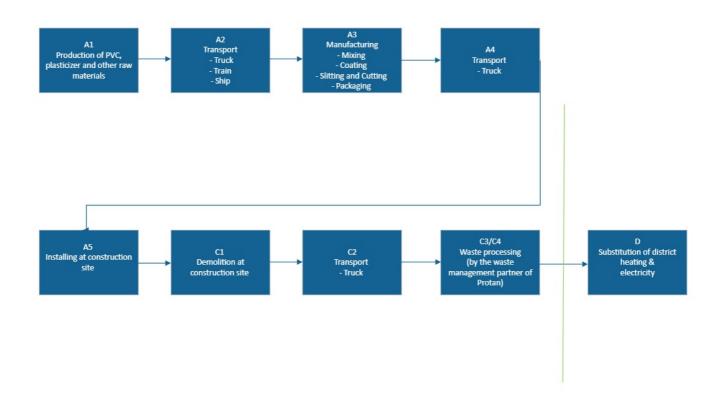
All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

Allocation:

The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

Data quality:

Specific data for the product composition are provided by the manufacturer. They represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on registered EPDs according to EN 15804, Ostfold Research databases, ecoinvent and other LCA databases. The data quality of the raw materials in A1 is presented in the table below.


Materials	Source	Data quality	Year
Chemical	ecoinvent 3.6	Database	2019
E-PVC	ecoinvent 3.6	Database	2019
Fire-, heat- and UV-stabilizers	ecoinvent 3.6	Database	2019
Pigments	ecoinvent 3.6	Database	2019
Plasticizer	ecoinvent 3.6	Database	2019
Polyester textile	ecoinvent 3.6	Database	2019
S-PVC	ecoinvent 3.6	Database	2019

System boundaries (X=included, MND=module not declared, MNR=module not relevant)

	Prod	duct stag	je	Constr installati	uction on stage		Use stage End of life stage Beyond the system boundaries				End of life stage						
Raw	materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De- construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling-potential
A ²	ı	A2	A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
X		Χ	Χ	X	X	MND	MND	MND	MND	MND	MND	MND	X	Χ	X	X	X

System boundary:

Additional technical information:

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Transport from production place to user (A4)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, 16-32 tonnes, EURO 6 (km)	36,7 %	300	0,043	l/tkm	12,90
Transport to waste processing (C2)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, 16-32 tonnes, EURO 6 (km)	36,7 %	300	0,043	l/tkm	12,90
Waste processing (C3)	Unit	Value			
Waste treatment per kg Polyvinylchloride (PVC) membrane, incineration (kg)	kg/DU	0,60			
Disposal (C4)	Unit	Value			
Landfilling of ashes from incineration of Polyvinylchloride (PVC) membrane (kg)	kg	0,10			
Benefits and loads beyond the system boundaries (D)	Unit	Value			
Substitution of electricity, in Norway (MJ)	MJ	0,61			
Substitution of thermal energy, district heating, in Norway (MJ)	МЈ	9,29			

LCA: Results

The LCA results are presented below for the declared unit defined on page 2 of the EPD document.

Enviro	Environmental impact													
	Indicator	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D				
	GWP-total	kg CO ₂ -eq	1,50E+00	2,94E-02	0	0	2,94E-02	1,20E+00	2,27E-02	-5,58E-02				
	GWP-fossil	kg CO ₂ -eq	1,49E+00	2,94E-02	0	0	2,94E-02	1,20E+00	2,27E-02	-5,38E-02				
	GWP-biogenic	kg CO ₂ -eq	4,16E-03	1,22E-05	0	0	1,22E-05	4,90E-04	1,10E-05	-1,11E-04				
	GWP-luluc	kg CO ₂ -eq	9,68E-04	1,05E-05	0	0	1,05E-05	9,39E-05	2,77E-06	-1,85E-03				
Ö	ODP	kg CFC11 -eq	3,18E-07	6,66E-09	0	0	6,66E-09	3,95E-08	1,46E-09	-3,92E-03				
Œ.	АР	mol H+ -eq	9,02E-03	8,45E-05	0	0	8,45E-05	6,95E-04	6,27E-05	-4,43E-04				
	EP-FreshWater	kg P -eq	1,02E-04	2,35E-07	0	0	2,35E-07	3,54E-06	3,24E-07	-4,78E-06				
-	EP-Marine	kg N -eq	1,62E-03	1,67E-05	0	0	1,67E-05	1,70E-04	1,81E-05	-1,45E-04				
-	EP-Terrestial	mol N -eq	1,92E-02	1,87E-04	0	0	1,87E-04	1,82E-03	2,10E-04	-1,57E-03				
	POCP	kg NMVOC -eq	6,31E-03	7,16E-05	0	0	7,16E-05	5,15E-04	5,62E-05	-4,32E-04				
	ADP-minerals&metals ¹	kg Sb-eq	1,20E-02	8,12E-07	0	0	8,12E-07	2,53E-06	7,12E-08	-5,35E-07				
	ADP-fossil ¹	MJ	3,41E+01	4,45E-01	0	0	4,45E-01	1,58E+00	1,40E-01	-7,70E-01				
<u>%</u>	WDP ¹	m ³	7,53E+01	4,30E-01	0	0	4,30E-01	3,23E+01	2,37E+00	-9,59E+00				

GWP-total = Global Warming Potential total; GWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment: EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption

Remarks to environmental impacts

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009"

^{*}INA Indicator Not Assessed

^{1.} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

Addition	al environme	ntal impact indicators								
In	dicator	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
	PM	Disease incidence	7,84E-08	1,80E-09	0	0	1,80E-09	4,52E-09	5,78E-10	-2,69E-08
	IRP ²	kgBq U235 -eq	5,45E-02	1,94E-03	0	0	1,94E-03	7,69E-03	7,44E-04	-4,92E-03
	ETP-fw ¹	CTUe	1,12E+02	3,30E-01	0	0	3,30E-01	7,58E+01	3,95E-01	-4,19E+00
48.* *****	HTP-c ¹	CTUh	1,57E-09	0,00E+00	0	0	0,00E+00	1,69E-10	2,10E-11	-7,70E-11
& D	HTP-nc ¹	CTUh	5,26E-08	3,60E-10	0	0	3,60E-10	1,78E-08	7,87E-10	-4,01E-09
	SQP ¹	dimensionless	3,88E+00	3,11E-01	0	0	3,11E-01	5,76E-01	4,55E-01	-5,15E+00

PM = Particulate Matter emissions; IRP = Ionizing radiation – human health; ETP-fw = Eco toxicity – freshwater; HTP-c = Human toxicity – cancer effects; HTP-nc = Human toxicity – non cancer effects; SQP = Soil Quality (dimensionless)

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009"

^{*}INA Indicator Not Assessed

^{1.} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

^{2.} This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

Resource use										
	ndicator	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
	PERE	MJ	2,27E+00	6,36E-03	0	0	6,36E-03	2,02E-01	1,25E-02	-4,76E+00
	PERM	MJ	0,00E+00	0,00E+00	0	0	0,00E+00	0,00E+00	0,00E+00	0,00E+00
್ಕ್ಯ	PERT	МЈ	2,27E+00	6,36E-03	0	0	6,36E-03	2,02E-01	1,25E-02	-4,76E+00
	PENRE	МЈ	2,26E+01	4,45E-01	0	0	4,45E-01	1,58E+00	1,40E-01	-7,70E-01
.åg	PENRM	МЈ	1,26E+01	0,00E+00	0	0	0,00E+00	0,00E+00	0,00E+00	0,00E+00
I	PENRT	МЈ	3,52E+01	4,45E-01	0	0	4,45E-01	1,58E+00	1,40E-01	-7,70E-01
	SM	kg	5,63E-03	0,00E+00	0	0	0,00E+00	0,00E+00	0,00E+00	0,00E+00
2	RSF	МЈ	6,00E-02	2,28E-04	0	0	2,28E-04	3,65E-03	3,08E-04	-8,33E-04
	NRSF	МЈ	1,35E-02	8,14E-04	0	0	8, 14E-04	0,00E+00	2,05E-03	-2,82E-01
⊗	FW	m^3	2,73E-02	4,75E-05	0	0	4,75E-05	3,78E-02	1,30E-04	-5,73E-03

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non renewable primary energy resources used as raw materials; PENRM = Use of non renewable primary energy resources; SM = Use of secondary materials; RESF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of life - Waste												
Inc	dicator	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D		
ā	HWD	kg	5,61E-03	2,29E-05	0	0	2,29E-05	0,00E+00	8,61E-03	-3,62E-05		
Ū	NHWD	kg	2,26E-01	2,16E-02	0	0	2,16E-02	0,00E+00	8,70E-02	-1,82E-02		
3	RWD	kg	4,99E-05	3,03E-06	0	0	3,03E-06	0,00E+00	3,25E-07	-4,03E-06		

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of life - Outpu	End of life - Output flow												
Indicat	tor	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D			
6	CRU	kg	0,00E+00	0,00E+00	0	0	0,00E+00	0,00E+00	0,00E+00	0,00E+00			
\$>>	MFR	kg	1,11E-03	0,00E+00	0	0	0,00E+00	0,00E+00	0,00E+00	0,00E+00			
DF	MER	kg	8,50E-05	0,00E+00	0	0	0,00E+00	6,00E-01	0,00E+00	0,00E+00			
50	EEE	MJ	5,36E-04	0,00E+00	0	0	0,00E+00	6,14E-01	0,00E+00	0,00E+00			
D.	EET	MJ	8,11E-03	0,00E+00	0	0	0,00E+00	9,29E+00	0,00E+00	0,00E+00			

CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported energy electrical; EET = Exported energy thermal

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

Biogenic Carbon Content									
Unit	At the factory gate								
kg C	0,00E+00								
kg C	0,00E+00								
	kg C								

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2

Additional requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Source	Amount	Unit
Electricity, Norway (kWh)	ecoinvent 3.6	24,33	g CO2-eg/kWh

Dangerous substances

The product contains no substances given by the REACH Candidate list.

Indoor environment

Additional Environmental Information

Additional environmental impact indicators required in NPCR Part A for construction products										
Indicator	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D	
GWPIOBC	kg CO ₂ -eq	1,48E+00	2,94E-02	0	0	2,94E-02	1,21E+00	2,38E-02	-5,50E-02	

GWP-IOBC: Global warming potential calculated according to the principle of instantaneous oxidation. In order to increase the transparency of biogenic carbon contribution to climate impact, the indicator GWP-IOBC is required as it declares climate impacts calculated according to the principle of instantaneous oxidation. GWP-IOBC is also referred to as GWP-GHG in context to Swedish public procurement legislation.

Bibliography

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures.

ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines.

EN 15804:2012 + A2:2019 Environmental product declaration - Core rules for the product category of construction products.

ISO 21930:2017 Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products.

ecoinvent v3, Allocation, cut-off by classification, Swiss Centre of Life Cycle Inventories.

Iversen et al., (2018) eEPD v3.0 - Background information for EPD generator system. LCA.no report number 04.18.

Ruttenborg et al., (2023) EPD generator for NPCR022:2022 Part B for Roof waterproofing - Background information for EPD generator application and LCA data, LCA.no report number 10.23

NPCR Part A: Construction products and services. Ver. 2.0. March 2021, EPD-Norge.

NPCR 022 Part B for Roof waterproofing. Ver. 2.0 March 2022, EPD-Norge.

	Program operator and publisher	Phone:	+47 977 22 020
epd-norway	The Norwegian EPD Foundation	e-mail:	post@epd-norge.no
Global Program Operator	Post Box 5250 Majorstuen, 0303 Oslo, Norway	web:	www.epd-norge.no
PROTAN	Owner of the declaration:	Phone:	+47 94 01 78 58
	Protan AS	e-mail:	lars.anisdahl@protan.no
	Baches vei 1, 3413 Lier	web:	www.protan.no
LCA)	Author of the Life Cycle Assessment	Phone:	+47 916 50 916
	LCA.no AS	e-mail:	post@lca.no
	Dokka 6A, 1671	web:	www.lca.no
(LCA)	Developer of EPD generator	Phone:	+47 916 50 916
	LCA.no AS	e-mail:	post@lca.no
.no	Dokka 6B,1671 Kråkerøy	web:	www.lca.no
EGO PLATFORM	ECO Platform	web:	www.eco-platform.org
VERIFIED	ECO Portal	web:	ECO Portal