Environmental product declaration in accordance with ISO 14025 and EN 15804+A2 # Flexilink® Connection Point The Norwegian EPD Foundation # Owner of the declaration: Mørenot Aquaculture AS #### **Product:** Flexilink® Connection Point ## **Declared unit:** 1 pc # This declaration is based on Product Category Rules: CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR 031:2023 Part B for sea-based aquaculture infrastructure and components # Program operator: The Norwegian EPD Foundation #### **Declaration number:** NEPD-7162-6559-EN # Registration number: NEPD-7162-6559-EN # Issue date: 26.07.2024 # Valid to: 26.07.2029 #### **EPD** software: LCAno EPD generator ID: 466320 ## **General information** ## Product Flexilink® Connection Point ## **Program operator:** The Norwegian EPD Foundation Post Box 5250 Majorstuen, 0303 Oslo, Norway Phone: +47 977 22 020 web: www.epd-norge.no #### **Declaration number:** NEPD-7162-6559-EN #### This declaration is based on Product Category Rules: CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR 031:2023 Part B for sea-based aquaculture infrastructure and components #### Statement of liability: The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences. #### **Declared unit:** 1 pcs Flexilink® Connection Point # **Declared unit with option:** A1,A2,A3,A4,C1,C2,C3,C4,D ## **Functional unit:** A component that connects anchor lines, grid lines, and bridles, forming the mooring system that secures pens and floating structures in place. #### General information on verification of EPD from EPD tools: Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Verification of each EPD is made according to EPD-Norway's guidelines for verification and approval requiring that tools are i) integrated into the company's environmental management system, ii) the procedures for use of the EPD tool are approved by EPD-Norway, and iii) the process is reviewed annually by an independent third party verifier. See Appendix G of EPD-Norway's General Programme Instructions for further information on EPD tools # **Verification of EPD tool:** Independent third party verification of the EPD tool, background data and test-EPD in accordance with EPDNorway's procedures and guidelines for verification and approval of EPD tools. Approval number: NEPDT65. Third party verifier: Elisabet Amat, GREENIZE projects (no signature required) ## Owner of the declaration: Mørenot Aquaculture AS Contact person: Liv Lund Phone: +4792032311 e-mail: liv.lund@morenot.com #### Manufacturer: Mørenot Aquaculture AS #### Place of production: Mørenot Aquaculture AS Langelandsvegen 35 6010 Ålesund, Norway ## **Management system:** ISO9001 and ISO14001 #### **Organisation no:** 997749588 #### Issue date: 26.07.2024 #### Valid to: 26.07.2029 #### Year of study: 2023 ## Comparability: EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context. #### **Development and verification of EPD:** The declaration is created using EPD tool lca.tools ver EPD2022.03, developed by LCA.no. The EPD tool is integrated in the company's management system, and has been approved by EPD Norway. Developer of EPD: Ingrid Johanne Høydal Reviewer of company-specific input data and EPD: Liv Lund ## Approved: Managing Director of EPD-Norway ## **Product** ## **Product description:** Flexilink® is Mørenot Aquacultures metal-free mooring solution and consists of several fibre straps connected at a single connection point and has no steel plates, shackles or thimbles. The Flexilink® connects anchor lines, grid lines and bridles that make out the mooring system and keep the pen and other floating structures in the desired position at all times. #### **Product specification** Flexilink® is metal free and made from fibre straps consisting of Polyester threads. Outer shell is made from polyester and protects the fibres in the core. MBL from 50 to 280 tons. Certified according to NS-9415:2021 and NYTEK23. | Materials | kg | % | | | |--------------------------|-------|--------|--|--| | Textile - Polyester (PE) | 64,10 | 100,00 | | | | Total | 64,10 | 100,00 | | | | Packaging | kg | % | | | | Packaging - Paper | 2,00 | 7,41 | | | | Packaging - Wood | 25,00 | 92,59 | | | | Total incl. packaging | 91,10 | 100,00 | | | #### **Technical data:** FLEXILINK GRID STRAPS 105T 1,5m FLEXILINK STRAP 56 T 2m/4m FLEXILINK ANCHOR LINE STRAP 105T 5m/10m FLEXILINK BRIDLE STRAP 56T 1,5m/3m FLEXILINK MAIN STRAP 280T 1,5/3m FLEXILINK SAFETY STRAP 105 T 1,5/3m #### Market: Norway #### Reference service life, product 15 years Reference service life, building or construction works ## LCA: Calculation rules #### **Declared unit:** 1 pcs Flexilink® Connection Point #### **Cut-off criteria:** All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances. #### **Allocation:** The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis. # Data quality: Specific data for the product composition are provided by the manufacturer. The data represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on EPDs according to EN 15804 and different LCA databases. The data quality of the raw materials in A1 is presented in the table below. | Materials | Source | Data quality | Year | |--------------------------|------------------------|--------------|------| | Packaging - Paper | ecoinvent 3.6 | Database | 2019 | | Packaging - Wood | Modified ecoinvent 3.6 | Database | 2019 | | Textile - Polyester (PE) | Modified ecoinvent 3.6 | Database | 2019 | # System boundaries (X=included, MND=module not declared, MNR=module not relevant) | P | roduct stag | je | | uction
ion stage | | Use stage End of life stage | | | | | | Beyond the system boundaries | | | | | |------------------|-------------|---------------|-----------|---------------------|-----|-----------------------------|--------|-------------|---------------|------------------------------|--------------------------|-----------------------------------|-----------|---------------------|----------|--| | Raw
materials | Transport | Manufacturing | Transport | Assembly | Use | Maintenance | Repair | Replacement | Refurbishment | Operational
energy
use | Operational
water use | De-
construction
demolition | Transport | Waste
processing | Disposal | Reuse-Recovery-
Recycling-potential | | A1 | A2 | A3 | A4 | A5 | B1 | B2 | В3 | B4 | B5 | В6 | В7 | C1 | C2 | C3 | C4 | D | | Χ | Χ | Χ | Х | MND Χ | Χ | Х | Χ | X | # System boundary: ## Additional technical information: https://www.morenot.com/aquaculture/mooring/ ## LCA: Scenarios and additional technical information The following information describe the scenarios in the different modules of the EPD. Module A4 - Default travel distance from manufacturing site to the production location include a default travel distance by 300 km with road freight and 1 Nm (1.852 km) freight as stated in NPCR 031 part B if not specified to a specific customer/order. Module C1 - Freight from the aquaculture facility to disassembly require a service vessel aquaculture operations. For this scenario its used a default travel distance with sea freight of 1 Nm (1.852 km) to account for transport between the production location at sea and the nearest dock. Module C2 - Use default distance of 300 km for Norwegian conditions as stated in NPCR 031 part B. Module C3-C4 - Waste treatment and the processing of waste are based upon the assumption that all material is collected at the end-of-life phase as provided in table 3 in NPCR 031 part B for aquaculture infrastructure and components. Phase C3, waste treatments include material recycling, incineration with and without energy recovery, and fly ash extraction. In phase C4, disposal methods involve landfilling of different waste fractions and ashes. | Transport from production place to user (A4) | Capacity utilisation
(incl. return) % | Distance (km) | Fuel/Energy Consumption | Unit | Value
(Liter/tonne) | |---|--|---------------|-------------------------|-------|------------------------| | Ship, aquaculture transport, work boat, 14 meters, without tugging (kgkm) - Global | 20,0 % | 2 | 1,790 | l/tkm | 3,32 | | Truck, 16-32 tonnes, EURO 6 (km) - Europe | 36,7 % | 300 | 0,043 | l/tkm | 12,90 | | De-construction demolition (C1) | Unit | Value | | | | | Ship, aquaculture transport, service vessel, 24 meters, without tugging (kgkm) - Global | kgkm/DU | 1,85 | | | | | Transport to waste processing (C2) | Capacity utilisation
(incl. return) % | Distance (km) | Fuel/Energy Consumption | Unit | Value
(Liter/tonne) | | Truck, 16-32 tonnes, EURO 6 (km) - Europe | 36,7 % | 300 | 0,043 | l/tkm | 12,90 | | Waste processing (C3) | Unit | Value | | | | | Polyester to recycling (kg) | kg | 44,87 | | | | | Waste treatment of plastic mixture, incineration with energy recovery and fly ash extraction (kg) | kg | 9,62 | | | | | Waste treatment per kg of impregnated
aquaculture components, washing process (kg) -
Norway | kg | 64,10 | | | | | Disposal (C4) | Unit | Value | | | | | Landfilling of ashes from incineration of Plastic mixture, process per kg ashes and residues (kg) | kg | 0,34 | | | | | Landfilling of plastic mixture (kg) | kg | 9,62 | | | | | Benefits and loads beyond the system boundaries (D) | Unit | Value | | | | | Substitution of electricity, in Norway (MJ) | MJ | 14,77 | | | | | Substitution of polyethylene terephthalate, PET, amorphous (kg) | kg | 44,87 | | | | | Substitution of thermal energy, district heating, in Norway (MJ) | МЈ | 223,49 | | | | ## **LCA: Results** The LCA results are presented below for the declared unit defined on page 2 of the EPD document. | Envir | Environmental impact | | | | | | | | | | | |----------|----------------------------------|------------------------|-----------|----------|----------|----------|----------|----------|----------|----------|-----------| | | Indicator | Unit | A1 | A2 | А3 | A4 | C1 | C2 | C3 | C4 | D | | | GWP-total | kg CO ₂ -eq | 2,07E+02 | 7,45E+00 | 6,69E-01 | 5,38E+00 | 2,68E-03 | 4,42E+00 | 4,14E+01 | 1,10E+00 | -1,43E+02 | | | GWP-fossil | kg CO ₂ -eq | 2,47E+02 | 7,44E+00 | 5,92E-01 | 5,37E+00 | 2,68E-03 | 4,42E+00 | 4,13E+01 | 1,10E+00 | -1,42E+02 | | | GWP-biogenic | kg CO ₂ -eq | -4,06E+01 | 3,08E-03 | 7,69E-02 | 2,02E-03 | 7,92E-07 | 1,83E-03 | 9,03E-02 | 9,83E-05 | -2,85E-01 | | | GWP-luluc | kg CO ₂ -eq | 2,47E-01 | 2,65E-03 | 1,66E-04 | 1,96E-03 | 2,16E-06 | 1,57E-03 | 3,50E-02 | 2,16E-05 | -1,15E-01 | | (3) | ODP | kg CFC11 -eq | 1,61E-05 | 1,69E-06 | 1,06E-07 | 1,21E-06 | 5,69E-10 | 1,00E-06 | 2,18E-06 | 3,01E-08 | -9,44E-02 | | (F | AP | mol H+ -eq | 1,07E+00 | 2,14E-02 | 4,13E-03 | 4,57E-02 | 8,97E-05 | 1,27E-02 | 9,32E-02 | 7,47E-04 | -6,20E-01 | | | EP-FreshWater | kg P -eq | 1,32E-02 | 5,94E-05 | 6,43E-06 | 3,80E-05 | 1,19E-08 | 3,53E-05 | 4,63E-04 | 9,98E-07 | -3,77E-03 | | | EP-Marine | kg N -eq | 2,11E-01 | 4,23E-03 | 1,73E-03 | 1,05E-02 | 2,16E-05 | 2,51E-03 | 1,88E-02 | 1,41E-03 | -1,09E-01 | | | EP-Terrestial | mol N -eq | 2,01E+00 | 4,73E-02 | 1,81E-02 | 1,15E-01 | 2,37E-04 | 2,81E-02 | 2,21E-01 | 2,97E-03 | -1,18E+00 | | | POCP | kg NMVOC -eq | 1,11E+00 | 1,81E-02 | 4,78E-03 | 3,37E-02 | 6,28E-05 | 1,08E-02 | 7,30E-02 | 1,08E-03 | -4,34E-01 | | | ADP-minerals&metals ¹ | kg Sb-eq | 3,91E-03 | 2,06E-04 | 1,12E-05 | 1,26E-04 | 2,37E-08 | 1,22E-04 | 7,56E-04 | 7,32E-07 | -2,49E-03 | | | ADP-fossil ¹ | MJ | 5,48E+03 | 1,12E+02 | 7,50E+00 | 7,98E+01 | 3,62E-02 | 6,68E+01 | 2,69E+02 | 2,22E+00 | -3,17E+03 | | <u>%</u> | WDP ¹ | m^3 | 1,48E+04 | 1,09E+02 | 1,10E+01 | 6,68E+01 | 7,36E-03 | 6,46E+01 | 1,41E+03 | 1,87E+01 | -2,08E+03 | GWP-total = Global Warming Potential total; GWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment: EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption # Remarks to environmental impacts [&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" ^{*}INA Indicator Not Assessed ^{1.} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator | Additio | Additional environmental impact indicators | | | | | | | | | | | |--------------|--|-------------------|----------|----------|----------|----------|----------|----------|----------|----------|-----------| | Inc | dicator | Unit | A1 | A2 | A3 | A4 | C1 | C2 | C3 | C4 | D | | | PM | Disease incidence | 8,17E-06 | 4,56E-07 | 5,36E-08 | 4,99E-07 | 6,28E-10 | 2,70E-07 | 1,07E-06 | 1,51E-08 | -6,01E-06 | | (m) | IRP ² | kgBq U235 -eq | 1,13E+01 | 4,92E-01 | 2,91E-02 | 3,49E-01 | 1,56E-04 | 2,92E-01 | 6,93E-01 | 1,07E-02 | -3,28E+00 | | | ETP-fw ¹ | CTUe | 3,67E+03 | 8,34E+01 | 8,05E+00 | 5,64E+01 | 2,18E-02 | 4,95E+01 | 3,94E+02 | 2,67E+00 | -2,14E+03 | | 46.*
**** | HTP-c ¹ | CTUh | 1,24E-07 | 0,00E+00 | 7,01E-10 | 6,67E-10 | 2,00E-12 | 0,00E+00 | 2,93E-08 | 5,90E-11 | -7,08E-08 | | 48° E | HTP-nc ¹ | CTUh | 2,68E-06 | 9,11E-08 | 3,28E-08 | 6,01E-08 | 2,00E-11 | 5,41E-08 | 3,77E-07 | 1,72E-09 | -1,53E-06 | | | SQP ¹ | dimensionless | 1,94E+03 | 7,87E+01 | 4,79E+00 | 4,84E+01 | 4,97E-03 | 4,67E+01 | 1,61E+02 | 8,39E+00 | -4,28E+02 | PM = Particulate Matter emissions; IRP = Ionizing radiation – human health; ETP-fw = Eco toxicity – freshwater; HTP-c = Human toxicity – cancer effects; HTP-nc = Human toxicity – non cancer effects; SQP = Potential Soil Quality Index (dimensionless) [&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed ^{1.} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator ^{2.} This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator. | Resource us | Resource use | | | | | | | | | | | |-------------|--------------|----------------|----------|----------|----------|----------|----------|----------|-----------|----------|-----------| | | dicator | Unit | A1 | A2 | A3 | A4 | C1 | C2 | C3 | C4 | D | | Ç.C | PERE | MJ | 4,26E+02 | 1,61E+00 | 1,43E-01 | 1,02E+00 | 2,58E-04 | 9,56E-01 | 1,06E+02 | 1,03E-01 | -1,97E+02 | | | PERM | MJ | 3,75E+02 | 0,00E+00 | Fs. | PERT | MJ | 8,01E+02 | 1,61E+00 | 1,43E-01 | 1,02E+00 | 2,58E-04 | 9,56E-01 | 1,06E+02 | 1,03E-01 | -1,97E+02 | | | PENRE | MJ | 5,48E+03 | 1,13E+02 | 7,50E+00 | 7,98E+01 | 3,63E-02 | 6,68E+01 | 2,69E+02 | 2,22E+00 | -3,17E+03 | | Å | PENRM | MJ | 1,54E+03 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | -1,54E+03 | 0,00E+00 | 0,00E+00 | | IA | PENRT | MJ | 7,02E+03 | 1,13E+02 | 7,50E+00 | 7,98E+01 | 3,63E-02 | 6,68E+01 | -1,27E+03 | 2,22E+00 | -3,17E+03 | | | SM | kg | 1,68E+00 | 0,00E+00 | 2 | RSF | MJ | 1,35E+01 | 5,76E-02 | 4,33E-03 | 3,42E-02 | 0,00E+00 | 3,42E-02 | 2,38E-01 | 2,13E-03 | -2,00E-02 | | | NRSF | MJ | 2,40E-02 | 2,06E-01 | 3,86E-02 | 1,22E-01 | 0,00E+00 | 1,22E-01 | 2,55E+00 | 4,65E-03 | -6,78E+00 | | 8 | FW | m ³ | 3,68E+00 | 1,20E-02 | 4,28E-03 | 7,69E-03 | 2,33E-06 | 7,14E-03 | 8,64E-01 | 2,76E-03 | -1,78E+00 | PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non renewable primary energy resources used as raw materials; PENRM = Use of non renewable primary energy resources; SM = Use of secondary materials; PENRM = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water [&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed | End of life - | End of life - Waste | | | | | | | | | | | |---------------|---------------------|------|----------|----------|----------|----------|----------|----------|----------|----------|-----------| | Ind | licator | Unit | A1 | A2 | A3 | A4 | C1 | C2 | C3 | C4 | D | | | HWD | kg | 8,92E-01 | 5,80E-03 | 1,65E-01 | 3,84E-03 | 1,52E-06 | 3,44E-03 | 1,49E+01 | 9,12E-03 | -5,55E-01 | | Ū | NHWD | kg | 2,12E+01 | 5,47E+00 | 7,63E-01 | 3,26E+00 | 9,09E-05 | 3,25E+00 | 5,71E+00 | 9,63E+00 | -1,11E+01 | | <u></u> | RWD | kg | 1,04E-02 | 7,66E-04 | 4,42E-05 | 5,47E-04 | 2,52E-07 | 4,55E-04 | 8,06E-04 | 1,46E-05 | -3,25E-03 | HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed "Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed | End of life - O | nd of life - Output flow | | | | | | | | | | | |-----------------|--------------------------|------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | Indica | tor | Unit | A1 | A2 | A3 | A4 | C1 | C2 | C3 | C4 | D | | @ D | CRU | kg | 0,00E+00 | \$\ | MFR | kg | 0,00E+00 | 0,00E+00 | 1,08E+01 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 4,49E+01 | 8,62E-04 | 0,00E+00 | | DF | MER | kg | 0,00E+00 | 0,00E+00 | 1,58E+01 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 9,62E+00 | 2,11E-05 | 0,00E+00 | | 50 | EEE | MJ | 0,00E+00 | 0,00E+00 | 1,11E+01 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 1,48E+01 | 1,37E-03 | 0,00E+00 | | DØ. | EET | MJ | 0,00E+00 | 0,00E+00 | 1,67E+02 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 2,23E+02 | 2,07E-02 | 0,00E+00 | CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported energy electrical; EET = Exported energy thermal "Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed | Biogenic Carbon Content | | | | | | | | | | |-------------------------|---------------------|--|--|--|--|--|--|--|--| | Unit | At the factory gate | | | | | | | | | | kg C | 0,00E+00 | | | | | | | | | | kg C | 1,13E+01 | | | | | | | | | | | kg C | | | | | | | | | Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2 # **Additional requirements** # Greenhouse gas emissions from the use of electricity in the manufacturing phase National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3). ## **Dangerous substances** The product contains no substances given by the REACH Candidate list. ## **Indoor environment** # **Additional Environmental Information** | Additional enviro | Additional environmental impact indicators required in NPCR Part A for construction products | | | | | | | | | | |-------------------|--|----------|----------|----------|----------|----------|----------|----------|----------|-----------| | Indicator | Unit | A1 | A2 | A3 | A4 | C1 | C2 | C3 | C4 | D | | GWPIOBC | kg CO ₂ -eq | 2,48E+02 | 7,45E+00 | 6,63E-01 | 5,38E+00 | 2,68E-03 | 4,42E+00 | 4,14E+01 | 1,13E+00 | -1,43E+02 | GWP-IOBC: Global warming potential calculated according to the principle of instantaneous oxidation. In order to increase the transparency of biogenic carbon contribution to climate impact, the indicator GWP-IOBC is required as it declares climate impacts calculated according to the principle of instantaneous oxidation. GWP-IOBC is also referred to as GWP-GHG in context to Swedish public procurement legislation. # **Bibliography** ISO 14025:2010. Environmental labels and declarations - Type III environmental declarations - Principles and procedures. International Organization for Standardization. ISO 14044:2006. Environmental management - Life cycle assessment - Requirements and guidelines. International Organization for Standardization. EN 15804:2012+A2:2019. Environmental product declaration - Core rules for the product category of construction products. European Committee for Standardization. ISO 21930:2017. Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products. International Organization for Standardization. Ecoinvent v3, 2019. Allocation, cut-off by classification. Swiss Centre of Life Cycle Inventories. Iversen et al., (2021). eEPD v2021.09, background information for EPD generator tool system verification, LCA.no. Report number: 07.21. System verification report. Gaspard Philis (2023). EPD generator for NPCR 031 part B for aquaculture infrastructure and components, Background information for EPD generator application and LCA data, LCA.no report number: 03.23. PCR verification report. EPD Norway (2022). NPCR Part A: Construction products and services. The Norwegian EPD foundation. Version 2.0 published 24.03.2021. EPD Norway (2023). NPCR 031 Part B for aquaculture infrastructure and components. The Norwegian EPD foundation. Version 1.0 published 26.04.2023. | @ and navas | Program operator and publisher | Phone: +47 977 22 020 | |-------------------------|---|-------------------------------| | <pre>@ epd-norge</pre> | The Norwegian EPD Foundation | e-mail: post@epd-norge.no | | Global program operatør | Post Box 5250 Majorstuen, 0303 Oslo, Norway | web: www.epd-norge.no | | | Owner of the declaration: | Phone: +4792032311 | | MØRENOT | Mørenot Aquaculture AS | e-mail: liv.lund@morenot.com | | | Langelandsvegen 35, 6010 Ålesund | web: https://www.morenot.com/ | | | Author of the Life Cycle Assessment | Phone: +47 916 50 916 | | (LCA ⁾ | LCA.no AS | e-mail: post@lca.no | | no | Dokka 6A, 1671 | web: www.lca.no | | | Developer of EPD generator | Phone: +47 916 50 916 | | (LCA ⁾ | LCA.no AS | e-mail: post@lca.no | | no | Dokka 6B,1671 Kråkerøy | web: www.lca.no | | ECO PLATFORM | ECO Platform | web: www.eco-platform.org | | VERIFIED | ECO Portal | web: ECO Portal | | | | |