



# Environmental product declaration

in accordance with ISO 14025 and EN 15804+A2

# Biokalk 75





The Norwegian EPD Foundation

## Owner of the declaration:

Omya Hustadmarmor AS

**Product:** Biokalk 75

## **Declared unit:**

1 tonne

# **This declaration is based on Product Category Rules:** CEN Standard EN 15804:2012+A2:2019 serves as core

PCR

NPCR Part A: Construction products and services. Ver. 2.0 March 2021

## Program operator:

The Norwegian EPD Foundation

## **Declaration number:**

NEPD-7172-6583-EN

# Registration number:

NEPD-7172-6583-EN

Issue date: 21.08.2024

Valid to: 21.08.2029

## **EPD** software:

LCAno EPD generator ID: 458952



## **General information**

## **Product**

Biokalk 75

## **Program operator:**

The Norwegian EPD Foundation
Post Box 5250 Majorstuen, 0303 Oslo, Norway

Phone: +47 977 22 020 web: www.epd-norge.no

## **Declaration number:**

NEPD-7172-6583-EN

#### This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR Part A: Construction products and services. Ver. 2.0 March 2021

### Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

#### **Declared unit:**

1 tonne Biokalk 75

## Declared unit (cradle to gate) with option:

A1-A3,A4

## **Functional unit:**

Not applicable.

## General information on verification of EPD from EPD tools:

Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Verification of each EPD is made according to EPD-Norway's guidelines for verification and approval requiring that tools are i) integrated into the company's environmental management system, ii) the procedures for use of the EPD tool are approved by EPD-Norway, and iii) the process is reviewed annually by an independent third party verifier. See Appendix G of EPD-Norway's General Programme Instructions for further information on EPD tools

## **Verification of EPD tool:**

Independent third party verification of the EPD tool, background data and test-EPD in accordance with EPDNorway's procedures and guidelines for verification and approval of EPD tools.

Third party verifier:

VERIFIER NAME

(no signature required)

## Owner of the declaration:

Omya Hustadmarmor AS Contact person: Lovise Stakvik Phone: +47 41322610 e-mail: lovise.stakvik@omya.com

#### Manufacturer:

Omya Hustadmarmor AS Sjøvegen 69 6440 Elnesvågen, Norway

## Place of production:

Omya Hustadmarmor AS, production site Elnesvågen Sjøvegen 69 6440 Elnesvågen, Norway

#### Management system:

9001, 14001, 45001, and 50001

#### **Organisation no:**

912864227

#### Issue date:

21.08.2024

#### Valid to:

21.08.2029

#### Year of study:

2023

## **Comparability:**

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

## **Development and verification of EPD:**

The declaration is created using EPD tool lca.tools ver EPD2022.03, developed by LCA.no. The EPD tool is integrated in the company's management system, and has been approved by EPD Norway.

Developer of EPD: Pedro Ferreira

Reviewer of company-specific input data and EPD: Børge Heggen Johansen, Energiråd AS

## Approved:

Håkon Hauan, CEO EPD-Norge



## **Product**

## **Product description:**

Biokalk 75 is a dust free liquid suspension of liming material. Adding Biokalk 75 improves availability of mineral nutrients of the manure. Biokalk 75 reduces the risks of pollution of groundwater and rivers by nitrates and phosphates. Biokalk 75 also decreases air pollutants and nauseating smells, and reduces nitrogen monoxide emissions, which contributes to the greenhouse effect.

#### **Product specification**

High-quality, natural mineral to condition and enrich crop soil. Biokalk 75 is produced to guarantee screen specifications that meet agriculture requirements.

| Materials | Value | Unit |
|-----------|-------|------|
| Stone     | 48-80 | %    |
| Water     | 20-52 | %    |
| Additives | 0-2   | %    |

#### **Technical data:**

For technical information, contact at https://www.omya.com/en

#### Market:

Norway

## Reference service life, product

Not applicable.

## Reference service life, building

Not applicable.

## LCA: Calculation rules

#### **Declared unit:**

1 tonne Biokalk 75

### **Cut-off criteria:**

All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

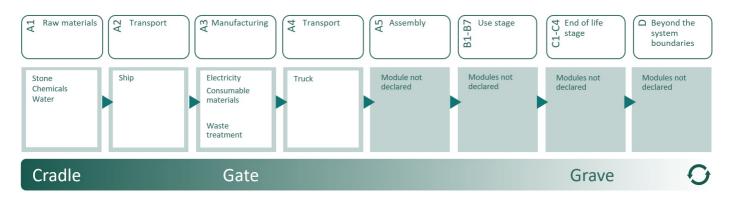
#### **Allocation:**

The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis. The impacts of stone extraction are allocated among the many products manufactured by Omya Hustadmarmor AS.

## Data quality:

Specific data for the product composition are provided by the manufacturer. They represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on registered EPDs according to EN 15804, Ostfold Research databases, ecoinvent and other LCA databases. The data quality of the raw materials in A1 is presented in the table below.

| Materials     | Source            | Data quality      | Year |
|---------------|-------------------|-------------------|------|
| Additives     | ecoinvent 3.6     | Database          | 2019 |
| Natural stone | Supplier specific | Supplier specific | 2023 |
| Water         | ecoinvent 3.6     | Database          | 2019 |




# System boundaries (X=included, MND=module not declared, MNR=module not relevant)

| Р                | Product stage Construction installation stag |               |           | Construction installation stage |     |             | Use stage |             |               |                              |                          | End of I                          | ife stage |                     | Beyond the system boundaries |                                        |
|------------------|----------------------------------------------|---------------|-----------|---------------------------------|-----|-------------|-----------|-------------|---------------|------------------------------|--------------------------|-----------------------------------|-----------|---------------------|------------------------------|----------------------------------------|
| Raw<br>materials | Transport                                    | Manufacturing | Transport | Assembly                        | Use | Maintenance | Repair    | Replacement | Refurbishment | Operational<br>energy<br>use | Operational<br>water use | De-<br>construction<br>demolition | Transport | Waste<br>processing | Disposal                     | Reuse-Recovery-<br>Recycling-potential |
| A1               | A2                                           | A3            | A4        | A5                              | В1  | B2          | В3        | В4          | В5            | В6                           | В7                       | C1                                | C2        | C3                  | C4                           | D                                      |
| Х                | X                                            | X             | X         | MND                             | MND | MND         | MND       | MND         | MND           | MND                          | MND                      | MND                               | MND       | MND                 | MND                          | MND                                    |

## **System boundary:**

The system includes the production of raw materials, like stone and additives (module A1), the transport of these materials with ship (module A2), the manufacturing of Biokalk 75 (module A3), and its distribution to clients (module A4).



# Additional technical information:

Not relevant.



## LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Module A4 contains transport with a tanker ship and truck to rivers and municipalities around the region of Stavanger, Norway. An average distance is included.

Modules C and D are not relevant for this product, as it fulfills the three criteria described by EN 15804+A2:2019, namely: 1) the product is physically integrated with soil or water during installation so it cannot be physically retrieved at end of life; 2) The product is no longer identifiable at end of life as a result of a physical or chemical transformation process; and 3) The product does not contain biogenic carbon.

| Transport from production place to user (A4) | Capacity utilisation<br>(incl. return) % | Distance (km) | Fuel/Energy Consumption | Unit  | Value<br>(Liter/tonne) |  |
|----------------------------------------------|------------------------------------------|---------------|-------------------------|-------|------------------------|--|
| Ship, Tanker, Transoceanic (km)              | 50,0 %                                   | 100           | 0,002                   | l/tkm | 0,20                   |  |
| Truck, over 32 tonnes, EURO 6 (km) - Europe  | 53,3 %                                   | 100           | 0,023                   | l/tkm | 2,30                   |  |



## **LCA: Results**

The LCA results are presented below for the declared unit defined on page 2 of the EPD document.

| Environmental impact |                                  |                        |          |          |  |  |  |  |
|----------------------|----------------------------------|------------------------|----------|----------|--|--|--|--|
|                      | Indicator                        | Unit                   | A1-A3    | A4       |  |  |  |  |
|                      | GWP-total                        | kg CO <sub>2</sub> -eq | 2,49E+01 | 9,47E+00 |  |  |  |  |
|                      | GWP-fossil                       | kg CO <sub>2</sub> -eq | 2,48E+01 | 9,46E+00 |  |  |  |  |
|                      | GWP-biogenic                     | kg CO <sub>2</sub> -eq | 8,94E-02 | 3,95E-03 |  |  |  |  |
|                      | GWP-luluc                        | kg CO <sub>2</sub> -eq | 8,46E-03 | 3,23E-03 |  |  |  |  |
| Ò                    | ODP                              | kg CFC11 -eq           | 4,79E-06 | 2,30E-06 |  |  |  |  |
|                      | АР                               | mol H+ -eq             | 5,20E-01 | 5,04E-02 |  |  |  |  |
|                      | EP-FreshWater                    | kg P -eq               | 2,49E-04 | 7,26E-05 |  |  |  |  |
|                      | EP-Marine                        | kg N -eq               | 1,31E-01 | 1,13E-02 |  |  |  |  |
| <del></del>          | EP-Terrestial                    | mol N -eq              | 1,47E+00 | 1,26E-01 |  |  |  |  |
|                      | POCP                             | kg NMVOC -eq           | 3,81E-01 | 4,21E-02 |  |  |  |  |
|                      | ADP-minerals&metals <sup>1</sup> | kg Sb-eq               | 1,85E-04 | 1,61E-04 |  |  |  |  |
|                      | ADP-fossil <sup>1</sup>          | MJ                     | 3,53E+02 | 1,51E+02 |  |  |  |  |
| <u>%</u>             | WDP <sup>1</sup>                 | m <sup>3</sup>         | 1,61E+03 | 1,10E+02 |  |  |  |  |

GWP-total = Global Warming Potential total; GWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment: EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption

# Remarks to environmental impacts

<sup>&</sup>quot;Reading example: 9,0 E-03 = 9,0\*10-3 = 0,009"

<sup>\*</sup>INA Indicator Not Assessed

<sup>1.</sup> The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator



| Additional environmental impact indicators |                     |                   |       |    |  |  |  |  |
|--------------------------------------------|---------------------|-------------------|-------|----|--|--|--|--|
|                                            | Indicator           | Unit              | A1-A3 | A4 |  |  |  |  |
|                                            | PM                  | Disease incidence | ND    | ND |  |  |  |  |
| (In)                                       | IRP <sup>2</sup>    | kgBq U235 -eq     | ND    | ND |  |  |  |  |
| 40                                         | ETP-fw <sup>1</sup> | CTUe              | ND    | ND |  |  |  |  |
| 46.<br>*** <u>2</u>                        | HTP-c <sup>1</sup>  | CTUh              | ND    | ND |  |  |  |  |
| 46<br>E                                    | HTP-nc <sup>1</sup> | CTUh              | ND    | ND |  |  |  |  |
|                                            | SQP <sup>1</sup>    | dimensionless     | ND    | ND |  |  |  |  |

PM = Particulate Matter emissions; IRP = Ionizing radiation – human health; ETP-fw = Eco toxicity – freshwater; HTP-c = Human toxicity – cancer effects; HTP-nc = Human toxicity – non cancer effects; SQP = Soil Quality (dimensionless)

<sup>&</sup>quot;Reading example: 9,0 E-03 = 9,0\*10-3 = 0,009" \*INA Indicator Not Assessed

<sup>1.</sup> The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the

<sup>2.</sup> This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.



| Resource use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                |          |          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|----------|----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Indicator | Unit           | A1-A3    | A4       |
| i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PERE      | MJ             | 1,06E+02 | 1,85E+00 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PERM      | MJ             | 0,00E+00 | 0,00E+00 |
| in a state of the | PERT      | MJ             | 1,06E+02 | 1,85E+00 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PENRE     | MJ             | 3,59E+02 | 1,51E+02 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PENRM     | MJ             | 8,88E-01 | 0,00E+00 |
| <b>IA</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PENRT     | MJ             | 3,60E+02 | 1,51E+02 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SM        | kg             | 0,00E+00 | 0,00E+00 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RSF       | MJ             | 2,00E-01 | 6,39E-02 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NRSF      | MJ             | 5,10E-01 | 2,32E-01 |
| <b>&amp;</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FW        | m <sup>3</sup> | 4,13E+00 | 1,66E-02 |

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non renewable primary energy resources used as raw materials; PENRM = Use of non renewable primary energy resources; SM = Use of secondary materials; PENRM = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

<sup>&</sup>quot;Reading example: 9,0 E-03 = 9,0\*10-3 = 0,009" \*INA Indicator Not Assessed



|           | End of life - Waste |      |      |          |          |
|-----------|---------------------|------|------|----------|----------|
| Indicator |                     |      | Unit | A1-A3    | A4       |
|           |                     | HWD  | kg   | 1,75E-01 | 8,17E-03 |
|           | Ū                   | NHWD | kg   | 1,47E+00 | 1,23E+01 |
|           |                     | RWD  | kg   | 2,15E-03 | 1,03E-03 |

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

"Reading example: 9,0 E-03 = 9,0\*10-3 = 0,009" \*INA Indicator Not Assessed

| End of life - Output flow |      |       |          |          |  |  |  |  |
|---------------------------|------|-------|----------|----------|--|--|--|--|
| Indicator                 | Unit | A1-A3 | A4       |          |  |  |  |  |
| <b>@▷</b>                 | CRU  | kg    | 0,00E+00 | 0,00E+00 |  |  |  |  |
| &⊳                        | MFR  | kg    | 3,61E-02 | 0,00E+00 |  |  |  |  |
| D₽                        | MER  | kg    | 5,28E-01 | 0,00E+00 |  |  |  |  |
| ØD                        | EEE  | MJ    | 3,12E-01 | 0,00E+00 |  |  |  |  |
| D                         | EET  | MJ    | 4,71E+00 | 0,00E+00 |  |  |  |  |

CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported energy electrical; EET = Exported energy thermal

"Reading example: 9,0 E-03 = 9,0\*10-3 = 0,009" \*INA Indicator Not Assessed

| Biogenic Carbon Content |                     |  |  |  |  |  |
|-------------------------|---------------------|--|--|--|--|--|
| Unit                    | At the factory gate |  |  |  |  |  |
| kg C                    | 0,00E+00            |  |  |  |  |  |
| kg C                    | 0,00E+00            |  |  |  |  |  |
|                         | kg C                |  |  |  |  |  |

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2



# **Additional requirements**

## Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

| Electricity mix           | Source        | Amount | Unit         |
|---------------------------|---------------|--------|--------------|
| Electricity, Norway (kWh) | ecoinvent 3.6 | 24,33  | g CO2-eq/kWh |

## **Dangerous substances**

The product contains no substances given by the REACH Candidate list.

#### **Indoor environment**

## **Additional Environmental Information**

| Additional environmental impact indicators required in NPCR Part A for construction products |                        |          |          |  |  |  |
|----------------------------------------------------------------------------------------------|------------------------|----------|----------|--|--|--|
| Indicator                                                                                    | Unit                   | A1-A3    | A4       |  |  |  |
| GWPIOBC                                                                                      | kg CO <sub>2</sub> -eq | 2,48E+01 | 9,47E+00 |  |  |  |

GWP-IOBC: Global warming potential calculated according to the principle of instantaneous oxidation. In order to increase the transparency of biogenic carbon contribution to climate impact, the indicator GWP-IOBC is required as it declares climate impacts calculated according to the principle of instantaneous oxidation. GWP-IOBC is also referred to as GWP-GHG in context to Swedish public procurement legislation.



# **Bibliography**

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures.

ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines.

EN 15804:2012+A2:2019 Environmental product declaration - Core rules for the product category of construction products.

ISO 21930:2017 Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products.

ecoinvent v3, Allocation, cut-off by classification, Swiss Centre of Life Cycle Inventories.

Iversen et al., (2018) eEPD v3.0 - Background information for EPD generator system. LCA.no report number 04.18.

Ruttenborg et al., (2022) EPD generator for NPCR022:2022 - Background information for EPD generator application and LCA data, LCA.no report number xx 22

NPCR Part A: Construction products and services. Ver. 2.0. March 2021, EPD-Norge.

| and norge               | Program operator and publisher              | Phone: +47 977 22 020           |
|-------------------------|---------------------------------------------|---------------------------------|
| © epd-norge             | The Norwegian EPD Foundation                | e-mail: post@epd-norge.no       |
| Global program operatør | Post Box 5250 Majorstuen, 0303 Oslo, Norway | web: www.epd-norge.no           |
| <u>OMYA</u>             | Owner of the declaration:                   | Phone: +47 41322610             |
|                         | Omya Hustadmarmor AS                        | e-mail: lovise.stakvik@omya.com |
|                         | Sjøvegen 69, 6440 Elnesvågen                | web: www.omya.com               |
| LCA                     | Author of the Life Cycle Assessment         | Phone: +47 916 50 916           |
|                         | LCA.no AS                                   | e-mail: post@lca.no             |
|                         | Dokka 6A, 1671                              | web: www.lca.no                 |
| (LCA)                   | Developer of EPD generator                  | Phone: +47 916 50 916           |
|                         | LCA.no AS                                   | e-mail: post@lca.no             |
| no                      | Dokka 6B,1671 Kråkerøy                      | web: www.lca.no                 |
| ECO PLATFORM            | ECO Platform                                | web: www.eco-platform.org       |
| VERIFIED                | ECO Portal                                  | web: ECO Portal                 |
| VERIFIED                |                                             |                                 |