

Environmental product declaration

in accordance with ISO 14025 and EN 15804+A2

Haplast PE water basin

The Norwegian EPD Foundation

Owner of the declaration:

Haplast AS

Product:

Haplast PE water basin

Declared unit:

1 kg

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core PCR

NPCR Part A: Construction products and services. Ver. 2.0 March 2021

Program operator:

The Norwegian EPD Foundation

Declaration number:

NEPD-7342-6728-EN

Registration number:

NEPD-7342-6728-EN

Issue date:

23.08.2024

Valid to:

23.08.2029

EPD software:

LCAno EPD generator ID: 424402

General information

Product:

Haplast PE water basin

Program operator:

The Norwegian EPD Foundation
Post Box 5250 Majorstuen, 0303 Oslo, Norway

Phone: +47 977 22 020 web: www.epd-norge.no

Declaration number:

NEPD-7342-6728-EN

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR Part A: Construction products and services. Ver. 2.0 March 2021

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit:

1 kg Haplast PE water basin

Declared unit with option:

A1-A3,A4,A5,C1,C2,C3,C4,D

Functional unit:

Not applicable.

General information on verification of EPD from EPD tools:

Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Verification of each EPD is made according to EPD-Norway's guidelines for verification and approval requiring that tools are i) integrated into the company's environmental management system, ii) the procedures for use of the EPD tool are approved by EPD-Norway, and iii) the process is reviewed annually by an independent third party verifier. See Appendix G of EPD-Norway's General Programme Instructions for further information on EPD tools

Verification of EPD tool:

Independent third party verification of the EPD tool, background data and test-EPD in accordance with EPDNorway's procedures and guidelines for verification and approval of EPD tools.

Third party verifier:

Elisabet Amat, GREENIZE projects

(no signature required)

Owner of the declaration:

Haplast AS Contact person: Aleksander Arneberg Phone: +47 77 71 12 20 e-mail: post@haplast.no

Manufacturer:

Haplast AS

Place of production:

Haplast AS Industriveien 6 9062 Furuflaten, Norway

Management system:

EN 12201

Organisation no:

987 486 945

Issue date:

23.08.2024

Valid to:

23.08.2029

Year of study:

2023

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

Development and verification of EPD:

The declaration is created using EPD tool lca.tools ver EPD2022.03, developed by LCA.no. The EPD tool is integrated in the company's management system, and has been approved by EPD Norway.

Developer of EPD: Lena Steffensen

Reviewer of company-specific input data and EPD: Aleksander Arneberg

Approved:

Håkon Hauan, CEO EPD-Norge

Product:

Product description:

Haplast PE water basins are 100% sealed and leakage free basins made from solid walled polyethylene KRAH pipes.

The Haplast PE water basin is applicable for transportation, distribution and maintenance of drinking water to public, private and industry consumption. The basin is completely sealed and ensures a dry environment for valves and fittings even in trenches with high groundwater levels. The Haplast water basin is produced in dimensions with inner diameter from 1200 mm up to 3000 mm.

Product specification:

Calculations for this EPD is done based on an average Haplast PE water basin.

Ladders and blue fittings are not included.

Project specific EPDs can be delivered on request.

Further information can be found at www.haplast.no

Materials	kg	%
Concrete	0,59	58,80
Metal - Steel	0,03	3,25
Pigments and Fillers	0,00	0,07
Plastic - Polyethylene (HDPE)	0,38	37,88
Rubber, synthetic	0,00	0,00
Total	1,00	100,00
Packaging	kg	%
	кg	76
Packaging - Plastic	0,00	100,00
Total incl. packaging	1,00	100,00

Technical data:

www.haplast.no

Market:

Nordic countries.

Reference service life, product:

When installed according to the relevant installation manual and having normal operations, the service lifetime is at least 100 years.

Reference service life, building or construction works:

Not applicable.

LCA: Calculation rules

Declared unit:

1 kg Haplast PE water basin

Cut-off criteria:

All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

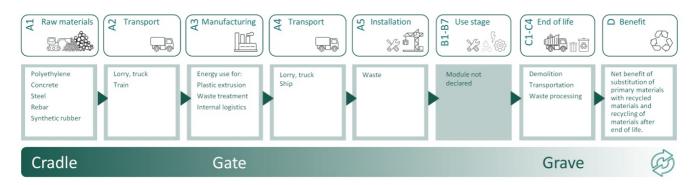
Allocation:

The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

Data quality:

Specific data for the product composition are provided by the manufacturer. The data represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on EPDs according to EN 15804 and different LCA databases. The data quality of the raw materials in A1 is presented in the table below.

Materials	Source	Data quality	Year
Concrete	ecoinvent 3.6	Database	2019
Metal - Steel	ecoinvent 3.6	Database	2019
Packaging - Plastic	ecoinvent 3.6	Database	2019
Pigments and Fillers	ecoinvent 3.6	Database	2019
Plastic - Polyethylene (HDPE)	ecoinvent 3.6	Database	2019
Rubber, synthetic	ecoinvent 3.6	Database	2019


System boundaries (X=included, MND=module not declared, MNR=module not relevant)

Р	Product stage Construction installation stage							Use stage		End of life stage				Beyond the system boundaries		
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refu <i>r</i> b ishment	Operational energy use	Operational water use	De- construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling-potential
A1	A2	A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
Х	Χ	X	Χ	Χ	MND	MND	MND	MND	MND	MND	MND	Χ	Χ	Χ	Χ	X

System boundary:

The system boundaries for this EPD is module A1-A5 and C2.

- A2: Concrete and metal is transported by internal logistics from sub contractor in Furuflaten Industripark. It is included in A3 and therefore not declared in A2.
- A4: Distance for transport from manufacturer to building site is set to 300 km by truck or lorry. This distance is given in new PCRs as default value for Norway.
- A5: Installation is not included due to different installation methods. Specific EPDs including A5 can be provided on request.
- C1, C3, C4 and D: Included as zero due to various demolition scenarios, however it is assumed that after 100 years of service life, all end-of-life product is expected to be collected from demolition site (C1). Most of the product materials is assumed to be recycled (C3) while the rest is assumed to be incinerated (C3) and/or landfilled (C4).
- C2: Transportation distance to nearest waste handling facility is estimated to be 85 km by truck. This distance is given in new PCRs as default value for Norway.

Additional technical information:

Professionally executed design, storage, handling, installation and operations are a precondition for a long service life. The installation instructions must be followed.

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Transport from production place to user (A4)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, 16-32 tonnes, EURO 6 (km) - Europe	36,7 %	300	0,043	l/tkm	12,90
Assembly (A5)	Unit	Value			
Waste, packaging, polyethylene, LDPE plastic parts, to average treatment (kg)	kg	0,00			
De-construction demolition (C1)	Unit	Value			
PE, Material to incineration (kg)	kg/DU	0,00			
PE, Material to landfill (kg)	kg/DU	0,00			
PE, Material to recycling (kg)	kg/DU	0,00			
PP, Material to incineration (kg)	kg/DU	0,00			
PP, Material to landfill (kg)	kg/DU	0,00			
PP, Material to recycling (kg)	kg/DU	0,00			
Transport to waste processing (C2)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, 16-32 tonnes, EURO 6 (km) - Europe	36,7 %	85	0,043	l/tkm	3,66
Waste processing (C3)	Unit	Value			
Materials to recycling (kg)	kg	0,00			
Substitution of primary steel with net scrap (kg)	kg	0,00			
Waste treatment per kg Polyethylene (PE), incineration with fly ash extraction (kg)	kg	0,00			
Waste treatment per kg Polypropylene (PP), incineration with fly ash extraction (kg)	kg	0,00			
Disposal (C4)	Unit	Value			
Landfilling of ashes from incineration of Polyethylene (PE), process per kg ashes and residues (kg)	kg	0,00			
Landfilling of ashes from incineration of Polypropylene (PP), process per kg ashes and residues (kg)	kg	0,00			
Waste, polyethylene (PE), to landfill (kg)	kg	0,00			
Waste, polypropylene (PP), to landfill (kg)	kg	0,00			
Waste, scrap steel, to landfill (kg)	kg	0,00			
Benefits and loads beyond the system boundaries (D)	Unit	Value			
Substitution of electricity, in Norway (MJ)	MJ	0,00			
Substitution of Polyethylene, HDPE, granulate (kg)	kg	0,00			
Substitution of Polypropylene, PP, granulate (kg)	kg	0,00			
Substitution of primary steel with net scrap (kg)	kg	0,00			
Substitution of thermal energy, district heating, in Norway (MJ)	МЈ	0,00			

LCA: Results

The LCA results are presented below for the declared unit defined on page 2 of the EPD document.

Enviro	Environmental impact													
	Indicator	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D				
	GWP-total	kg CO ₂ -eq	1,11E+00	4,90E-02	3,01E-08	0,00E+00	1,39E-02	0,00E+00	0,00E+00	0,00E+00				
	GWP-fossil	kg CO ₂ -eq	1,10E+00	4,90E-02	3,01E-08	0,00E+00	1,39E-02	0,00E+00	0,00E+00	0,00E+00				
	GWP-biogenic	kg CO ₂ -eq	6,05E-03	2,03E-05	4,00E-12	0,00E+00	5,75E-06	0,00E+00	0,00E+00	0,00E+00				
	GWP-luluc	kg CO ₂ -eq	8,56E-04	1,74E-05	2,00E-12	0,00E+00	4,94E-06	0,00E+00	0,00E+00	0,00E+00				
٨	ODP	kg CFC11 -eq	6,38E-08	1,11E-08	0,00E+00	0,00E+00	3,15E-09	0,00E+00	0,00E+00	0,00E+00				
Œ	АР	mol H+ -eq	4,21E-03	1,41E-04	3,70E-11	0,00E+00	3,99E-05	0,00E+00	0,00E+00	0,00E+00				
-	EP-FreshWater	kg P -eq	2,71E-05	3,92E-07	0,00E+00	0,00E+00	1,11E-07	0,00E+00	0,00E+00	0,00E+00				
-	EP-Marine	kg N -eq	8, 19E-04	2,79E-05	3,40E-11	0,00E+00	7,90E-06	0,00E+00	0,00E+00	0,00E+00				
-	EP-Terrestial	mol N -eq	9,19E-03	3,12E-04	1,33E-10	0,00E+00	8,83E-05	0,00E+00	0,00E+00	0,00E+00				
	POCP	kg NMVOC -eq	3,68E-03	1,19E-04	4,40E-11	0,00E+00	3,38E-05	0,00E+00	0,00E+00	0,00E+00				
	ADP-minerals&metals ¹	kg Sb-eq	2,04E-05	1,35E-06	0,00E+00	0,00E+00	3,84E-07	0,00E+00	0,00E+00	0,00E+00				
A	ADP-fossil ¹	MJ	2,87E+01	7,41E-01	1,24E-07	0,00E+00	2,10E-01	0,00E+00	0,00E+00	0,00E+00				
<u>%</u>	WDP ¹	m ³	1,27E+02	7,17E-01	4,39E-07	0,00E+00	2,03E-01	0,00E+00	0,00E+00	0,00E+00				

GWP-total = Global Warming Potential total; GWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment: EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption

Remarks to environmental impacts:

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009"

^{*}INA Indicator Not Assessed

^{1.} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

Addition	al environme	ntal impact indicators								
In	dicator	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
	PM Disease incidence		4,38E-08	3,00E-09	0,00E+00	0,00E+00	8,50E-10	0,00E+00	0,00E+00	0,00E+00
	IRP ²	kgBq U235 -eq	4,83E-02	3,24E-03	5,61E-10	0,00E+00	9,18E-04	0,00E+00	0,00E+00	0,00E+00
	ETP-fw ¹	CTUe	1,24E+01	5,49E-01	1,18E-07	0,00E+00	1,56E-01	0,00E+00	0,00E+00	0,00E+00
46. ± ** * £	HTP-c ¹	CTUh	9,82E-10	0,00E+00						
48	HTP-nc ¹	CTUh	1,29E-08	6,00E-10	0,00E+00	0,00E+00	1,70E-10	0,00E+00	0,00E+00	0,00E+00
	SQP ¹	dimensionless	4,50E+00	5,18E-01	2,17E-07	0,00E+00	1,47E-01	0,00E+00	0,00E+00	0,00E+00

PM = Particulate Matter emissions; IRP = Ionizing radiation – human health; ETP-fw = Eco toxicity – freshwater; HTP-c = Human toxicity – cancer effects; HTP-nc = Human toxicity – non cancer effects; SQP = Potential Soil Quality Index (dimensionless)

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

^{1.} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the

^{2.} This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

Resource use										
Ir	ndicator	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
	PERE	MJ	4,58E+00	1,06E-02	3,13E-09	0,00E+00	3,01E-03	0,00E+00	0,00E+00	0,00E+00
	PERM	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
್ಕ್ಯ	PERT	MJ	4,58E+00	1,06E-02	3,13E-09	0,00E+00	3,01E-03	0,00E+00	0,00E+00	0,00E+00
	PENRE	МЈ	1,32E+01	7,41E-01	1,24E-07	0,00E+00	2,10E-01	0,00E+00	0,00E+00	0,00E+00
el.	PENRM	МЈ	1,61E+01	0,00E+00	-1,61E-05	0,00E+00	0,00E+00	-1,61E+01	0,00E+00	0,00E+00
I	PENRT	MJ	2,93E+01	7,41E-01	-1,60E-05	0,00E+00	2,10E-01	-1,61E+01	0,00E+00	0,00E+00
	SM	kg	5,29E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
2	RSF	МЈ	4,37E-02	3,79E-04	8,20E-11	0,00E+00	1,08E-04	0,00E+00	0,00E+00	0,00E+00
	NRSF	MJ	1,73E-02	1,36E-03	2,15E-10	0,00E+00	3,84E-04	0,00E+00	0,00E+00	0,00E+00
<u></u>	FW	m ³	4,03E-02	7,92E-05	6,60E-11	0,00E+00	2,25E-05	0,00E+00	0,00E+00	0,00E+00

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non renewable primary energy resources used as raw materials; PENRM = Use of non renewable primary energy resources; SM = Use of secondary materials; PENRM = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of life - Wa	End of life - Waste												
In	dicator	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D			
ā	HWD	kg	6,28E-03	3,82E-05	0,00E+00	0,00E+00	1,08E-05	0,00E+00	0,00E+00	0,00E+00			
Ū	NHWD	kg	1,70E-01	3,60E-02	3,80E-07	0,00E+00	1,02E-02	0,00E+00	0,00E+00	0,00E+00			
8	RWD	kg	4,45E-05	5,05E-06	0,00E+00	0,00E+00	1,43E-06	0,00E+00	0,00E+00	0,00E+00			

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of life - Outpu	End of life - Output flow												
Indicat	tor	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D			
@▷	CRU	kg	0,00E+00										
\$>>	MFR	kg	2,85E-05	0,00E+00	1,94E-07	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00			
DF	MER	kg	1,84E-02	0,00E+00	1,00E-12	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00			
50	EEE	MJ	1,10E-02	0,00E+00	2,39E-09	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00			
DB	EET	MJ	1,66E-01	0,00E+00	3,62E-08	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00			

CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported energy electrical; EET = Exported energy thermal

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

Biogenic Carbon Content										
Unit	At the factory gate									
kg C	0,00E+00									
kg C	0,00E+00									
	kg C									

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2

Additional requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase:

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Source	Amount	Unit
Electricity, Norway (kWh)	ecoinvent 3.6	24,33	g CO2-eg/kWh

Dangerous substances:

The product contains no substances given by the REACH Candidate list.

Indoor environment:

No impact on indoor environment.

Additional Environmental Information

Additional environme	ntal impact indicators req	uired in NP	CR Part A	for constru	ction prod	ucts					
Indicator	Indicator Unit A1-A3 A4 A5 C1 C2 C3 C4 D										
GWPIOBC	kg CO ₂ -eq	1,08E+00	4,90E-02	3,01E-08	0,00E+00	1,39E-02	0,00E+00	0,00E+00	0,00E+00		

GWP-IOBC: Global warming potential calculated according to the principle of instantaneous oxidation. In order to increase the transparency of biogenic carbon contribution to climate impact, the indicator GWP-IOBC is required as it declares climate impacts calculated according to the principle of instantaneous oxidation. GWP-IOBC is also referred to as GWP-GHG in context to Swedish public procurement legislation.

Bibliography

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures.

ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines.

EN 15804:2012 + A2:2019 Environmental product declaration - Core rules for the product category of construction products.

ISO 21930:2017 Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products.

ecoinvent v3, Allocation, cut-off by classification, Swiss Centre of Life Cycle Inventories.

Iversen et al., (2021) eEPD v2021.09 Background information for EPD generator tool system verification, LCA.no Report number: 07.21 Graafland, J. and Ruttenborg, M. (2023) EPD generator for Plastic products, Background information for EPD generator application and LCA data, LCA.no report number: 06.23

NPCR Part A: Construction products and services. Ver. 2.0. March 2021, EPD-Norge.

and norge	Program operator and publisher:	Phone:	+47 977 22 020
© epd-norge	The Norwegian EPD Foundation	e-mail:	post@epd-norge.no
Global program operatør	Post Box 5250 Majorstuen, 0303 Oslo, Norway	web:	www.epd-norge.no
X Haplast [®]	Owner of the declaration:	Phone:	+47 77 71 12 20
	Haplast AS	e-mail:	post@haplast.no
	Industriveien 6, 9062 Furuflaten	web:	www.Haplast.no
LCA	Author of the Life Cycle Assessment:	Phone:	+47 916 50 916
	LCA.no AS	e-mail:	post@lca.no
.no	Dokka 6A, 1671	web:	www.lca.no
LCA	Developer of EPD generator:	Phone:	+47 916 50 916
	LCA.no AS	e-mail:	post@lca.no
	Dokka 6B,1671 Kråkerøy	web:	www.lca.no
ECO PLATFORM	ECO Platform	web:	www.eco-platform.org
VERIFIED	ECO Portal	web:	ECO Portal
TERRITES			