

EPD

Environmental Product Declaration

Indoor Current Sensor KECA 80 C85

Production site: Brno, Czech Republic

DOCUMENT KIND	IN COMPLIANCE WITH			
Environmental Product Declaration	ISO 14025 and EN 50693			
PROGRAM OPERATOR	PUBLISHER			
The Norwegian EPD Foundation	The Norwegian EPD Foundation			
REGISTRATION NUMBER OF THE PROGRAM OPERATOR	ISSUE DATE			
NEPD-7819-7156-EN	2024-10-17			
VALID TO	STATUS	STATUS SECURITY LEVEL		
2029-10-17	Approved	Public		
OWNING ORGANIZATION	ABB DOCUMENT ID	REV.	LANG.	PAGE
ABB Switzerland Ltd, Group Technology Management	1VLG101254 A EN 1/19			
© Copyright 2024 ABB. All rights reserved.				

EPD Owner	ABB Switzerland Ltd, Group Technology Management
Organization No.	CHE-101.538.426
Manufacturer name	ABB, s.r.o
and address	Vídenská 117, Brno 619 00, Czech Republic
Company contact	Václav Prokop – vaclav.prokop@cz.abb.com
	Global Product Manager
Program operator	The Norwegian EPD Foundation Post Box 5250 Majorstuen, 0303 Oslo, Norway
	phone: +47 23 08 80 00, email: post@epd-norge.no
Declared product	Indoor current sensor KECA 80 C85
Product	The KECA 80 C85 is low-power passive current sensor casted in PUR and designed
description	mostly for rated currents up to 630 A.
Functional unit	Current sensors are used to measure and protect an energy distribution system,
	during a reference service life (RSL) of 20 years in Europe.
Reference flow	Indoor current sensor KECA 80 C85, including related accessories and packaging.
Independent	Independent verification of the declaration and data, according to ISO 14025:2010
verification	
	🗆 INTERNAL 🛛 EXTERNAL
	Independent verifier approved by EPD-Norge: Elisabet Amat
	Signature: AAA
	Signature:
Approved by	Håkon Hauan, CEO EPD-Norge
	Signature: Hakon Hauran
Reference PCR	EN 50693:2019 – Product Category Rules for Life Cycle Assessments of Electronic
	and Electrical Products and Systems. EPDItaly007 – Electronic and Electrical Products and Systems, Rev. 3.0, 2023/01/13.
	EPDItaly007 – Electronic and Electrical Products and Systems, Rev. 3.0, 2023/01/13. EPDItaly015 – Electronic and Electrical Products and Systems – Switchboards, Rev.
	1.5, 2022/02/23.
Program	The Norwegian EPD Foundation/EPD-Norge, General Programme Instructions 2019,
instructions	Version 3.0, 2019/04/24.
LCA study	This EPD is based on the LCA study described in the LCA report 1VLG101184.
EPD type	Specific product by a specific manufacturer
EPD scope	Cradle-to-grave
Product RSL	20 years, this is a theoretical period selected for calculation purposes only and it is not
	representative for the minimum, average, nor actual service life of the product
Geographical	Manufacturing (suppliers): Manufacturing (ABB): Downstream:
representativeness	Global Czech Republic Europe
Reference year LCA software	2023 Sime Put 0 5 (2022)
	SimaPro 9.5 (2023)
LCI database Comparability	Ecoinvent v3.9.1 (2022) EPDs published within the same product category, though originating from different
Comparability	programs, may not be comparable. Full conformance with a PCR allows EPD
	comparability only when all stages of a life cycle have been considered. However,
	variations and deviations are possible.
Liability	The owner of the declaration shall be liable for the underlying information and
-	evidence. EPD-Norge shall not be liable with respect to manufacturer, life cycle
	assessment data, and evidence.

© Copyright 2024 ABB. All rights reserved.					
Approved	Public	1VLG101254	А	EN	2/19
STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE

Contents

Sustainability at ABB	4
General Information	5
Constituent Materials	6
LCA Background Information	8
Inventory Analysis	
Environmental Indicators	
Sensitivity analysis	15
Additional Environmental Information	
References	19

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	1VLG101254	A	EN	3/19
© Copyright 2024 ABB. All rights reserve	d.	·			

ABB is a leading global technology company that energizes the transformation of society and industry to achieve a more productive, sustainable future. By connecting software to its electrification, robotics, automation, and motion portfolio, ABB pushes the boundaries of technology to drive performance to new levels.

At ABB, we actively contribute to a more sustainable world, leading by example in our own operations and partnering with customers and suppliers to enable a low-carbon society, preserve resources, and promote social progress.

Learn more on our website <u>global.abb/group/en/sustainability</u> or scan the QR code.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE	
Approved	Public	1VLG101254	A	EN	4/19	
© Copyright 2024 ABB. All rights reserve	© Copyright 2024 ABB. All rights reserved.					

General Information

The product declared in this Environmental Product Declaration is the indoor current sensor KECA 80 C85, including related accessories and packaging.

Current sensors offer an alternative way of making the current measurement needed for the protection and monitoring of medium voltage power systems. Sensors based on alternative principles have been introduced as successors to conventional instrument transformers in order to significantly reduce size, increase safety, and to provide greater rating standardization and a wider functionality range.

The construction is based on Rogowski coil principle. The current sensors have combined class for both measuring or protection purposes. The current sensors can be mounted in any position. The current sensors shall be fixed on insulated and shielded cables or other conductors.

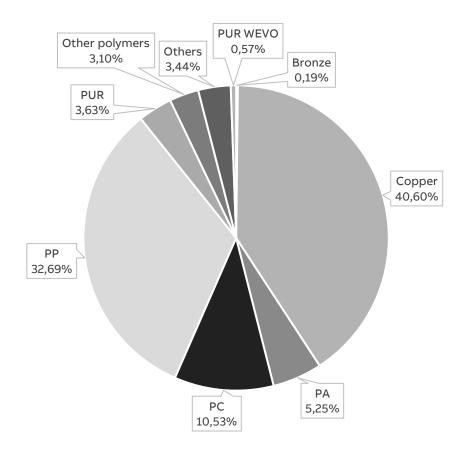
Technic	Technical information				
	Unit	Value			
Outer height/width	mm	116.5/25.5			
Insulation level	kV	0.82			
Rated primary	А	from 80 up to 4 000			
Accuracy class	-	0.5/5P630 (IEC 60044-8) 0.5-A2/5P 85kA (IEC 61869-10)			
Frequency	Hz	50 / 60			

General technical specifications of the product are presented below.

The production of the instrument sensors, from which medium indoor current sensor KECA 80 C85 is part of, is located in the ABB Brno Videnska factory. The instrument sensors are produced and assembled directly in the ABB factory combined with components produced by ABB's suppliers.

ABB Brno ELDS adopts and implements for its own activities an integrated Quality/Environmental/Health Management System in compliance with the following standards:

- UNI EN ISO 9001:2015 Quality Management Systems- Requirements
- UNI EN ISO 14001:2015 Environmental Management Systems
- UNI EN ISO 45001:2018 Occupational Health and Safety Management system


STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	1VLG101254	A	EN	5/19

Constituent Materials

The constituent materials of KECA 80 C85 are presented below.

Туре	Material	Weight [kg]	Weight [%]
Metals	Bronze	0.001	0.19
	Copper	0.115	40.6
	PA	0.015	5.25
	PC	0.03	10.53
Plastics	PP	0.092	32.69
	PUR	0.010	3.63
	Other polymers	0.009	3.10
Others	Others	0.01	3.44
Others	PUR WEVO	0.002	0.57
Total		0.283	100

KECA 80 C85

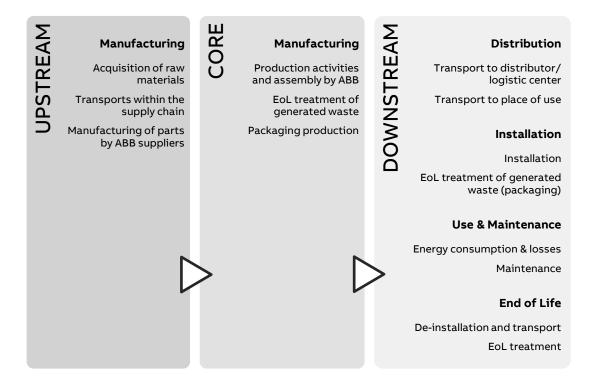
DOCUMENT ID.	REV.	LANG.	PAGE
1VLG101254	А	EN	6/19

Description	Material	Weight [kg]	Weight [%]
Metals	Aluminum	0.00005	0.10
Metals	Steel	0.002	4.20
Plastics and Rubbers	Polymers	0.001	2.10
Plastics and Rubbers	Rubber	0.00006	0.12
Wooden base materials	Wood (pallet + case)	0.041	82.65
Unit test report	Paper	0.005	10.09
Others	Cardboard	0.0004	0.75
Total		0.0496	100

The packaging materials and accessories weigh 0.0496 kg, and the constituent materials are presented below.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	1VLG101254	A	EN	7/19
© Copyright 2024 ABB. All rights re	served.	· · · · ·			

LCA Background Information


Functional Unit

The functional unit of this study is to measure and protect an energy distribution system during a service life of 20 years and with a use rate of 100 %. The reference flow is an indoor current sensor KECA 80 C85 casted in PUR and its related accessories and packaging.

Note, the reference service life (RSL) of 20 years is a theoretical period selected for calculation purposes only – this is not representative for the minimum, average, nor actual service life of the product.

System Boundaries

The life cycle assessment of the KECA 80 C85, an EEPS (Electronic and Electrical Products and Systems), is a "cradle-to-grave" analysis. The figure below shows the product life cycle stages and the information considered in the LCA.

Data quality

Both primary and secondary data are used. The main sources for primary data are the bill of materials and technical drawings, while site specific foreground data are provided by ABB. Furthermore, information and data obtained from other LCA studies are also used.

For all processes for which primary data are not available, generic data originating from the ecoinvent v3.9.1 database, "allocation, cut-off by classification", are used. The LCA software used for the calculations is SimaPro 9.5.

DOCUMENT ID.	REV.	LANG.	PAGE
1VLG101254	A	EN	8/19

Allocation rules

The utility consumption and waste generation by ABB, in the core manufacturing stage, is allocated to the production of one reference product according to applicable rules. For the end-of-life allocation, the "Polluter Pays" principle is adopted according to what is defined in the CEN/TR 16970 standard. However, the potential benefits and avoided loads from recovery and recycling processes are not considered because it is not required by the PCR.

Cut-off criteria

The materials that were excluded are glue, and adhesive, as their mass represents less than 2% of that of the whole product, as stated in the paragraph of cut-off criteria of EPDItaly015: "Materials making up the sensor itself whose total mass does not exceed 2% of the total weight of the device".

The same applies for tape and labels used in packaging, which are even a smaller fraction of the total mass.

Sandblasting of capacitors and phosphating were also excluded due to the model complexity and unavailability of reference data.

	REV.	LANG.	PAGE
IVLG101254	A	EN	9/19
Ľ	VLG101254	VLG101254 A	VLG101254 A EN

Inventory Analysis

Manufacturing Stage (upstream)

The life cycle inventory in the upstream manufacturing stage is based on the primary data available from ABB. Datasets are applied accordingly, to the best of our knowledge, to represent each material, manufacturing process, and surface treatment. Modelling decisions and assumptions that are highly relevant to the results are as following:

- Printed wiring boards are modelled on a component level, i.e., each component is considered and mapped with the most representative dataset available.
- PUR is modelled on a chemical level, i.e., each chemical used is considered and mapped with the most representative dataset available.
- To account for the production activities of metal and plastic parts, Metal working, average and Injection molding are the most frequently used processes. Surface treatments are also included, and the most common surface treatment is *ABB_Tin plating*, *pieces* (*GLO*)_*SMP_V1*.

Additionally, supply chain transports are added as far as data is available between ABB, the suppliers, and sub-suppliers. Only primary suppliers are considered. The rest of the transports are assumed to already be included in ecoinvent's "market for"-processes. The selected ecoinvent processes are *Transport, freight, lorry 16-32 metric ton, EURO4 [RER]* for lorry and *transport, freight, sea, container ship [GLO]* for sea transport.

Manufacturing Stage (core)

In the core manufacturing stage, utility consumption and waste generation at the ABB manufacturing site are accounted for. The packaging materials and accessories associated with the product are also considered. The energy mix used for the production is representative for ABB Videnska factory based on the guarantee of origin (GO) energy certificate. This dataset includes electricity inputs produced in this country and from imports and transformed to medium voltage, the transmission voltage, direct emissions to air and electricity losses during transmission.

Distribution

The transport distance from ABB's plant to the site of installation is assumed to be 300 km over land, as suggested by the PCR EPDItaly015, as the actual distance is unknown. The selected ecoinvent process is *Transport, freight, lorry 16-32 metric ton, euro4 [RER]/ market for transport, freight, lorry 16-32 metric ton, EURO4 | Cut-off, S*, and the scenario is representative for Europe.

EN	10/19
_	EN

Installation

The installation phase only implies manual activities, and no energy is consumed. Therefore, this phase only considers the end-of-life of the packaging materials used.

	Scenario	Transport	Representation
Packaging End-of-Life	<i>Packaging waste by waste management operations</i> (Eurostat, 2021)*	100 km by lorry (assumption)	Europe

*Due to lack of data from Eurostat, 100% landfill is assumed for ceramics (e.g., bentonite)

Use

The use stage considers the reference power consumption and power losses over the reference service life of 20 years as defined in the functional unit. This is calculated using the following formula, according to the PCR EPDItaly015 "Electronic and electrical products and systems - Switchboards" which defines specific rules for major product family the functional unit is used in.

Calculation of losses for KECA 80 C85 applied in switchgear ZX2 36.12.31 with nominal current 630 A:

$$\Delta P_{use} = 0.000319^2 * 3700 = 0.000377 W$$

$$E_{use}[kWh] = \frac{0.000377 * 8760 * 20}{1000} = 0.0662 \, kWh$$

Where:

- *E*_{use} = Total energy use over the reference service life
- Δ*P*_{use} = Reference power consumption in watts
- $R = Total resistance in \Omega$
- *RSL* = Reference Service Life in years
- *U* = Rated primary voltage in V
- 8760 is the number of hours in a year
- 1000 is the conversion factor from W to kW

Because this product is sold globally and is not limited to any specific country, the latest energy mix of the European Union is adopted as suggested by the standard EN 50693. The emission factor of the energy mix is presented below.

Energy mix	Source	Amount	Unit
Electricity, medium voltage {RER} market group for Cut-off, S	Ecoinvent v3.9.1	0.361	kg CO₂-eq/kWh

Since no maintenance happens during the use phase, the environmental impacts linked to this procedure are omitted from the analysis.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE				
Approved	Public	1VLG101254	A	EN	11/19				
© Copyright 2024 ABB. All rights reserved.									

End of life

Decommissioning of the product only implies manual activities, and no energy is consumed. Therefore, this phase only considers the end-of-life of the product.

	Scenario	Transport	Representation	
Product End-of-Life	IEC/TR 62635 (Annex D.3)*	100 km by lorry (assumption)	Europe	

*A conservative approach is adopted by considering all parts as either: requiring selective treatment, difficult to process, or going through a separation process; no individual part is considered as a single recyclable material. Also, due to the sensor containing parts difficult to process through separation, these are all modelled as 100 % waste to landfill to represent the typical waste streams within Europe.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE			
Approved	Public	1VLG101254	A	EN	12/19			
© Copyright 2024 ABB. All rights reserved.								

Environmental Indicators

In accordance with the PCR EPDItaly007, the environmental impact indicators are determined by using the characterization factors and impact assessment methods specified in EN 15804:2012+A2:2019.

KECA 80 C85

			Cradle-t	o-gate						
					Cradle-t	o-grave				
Impact	Impact				UPSTREAM	CORE		DOWNS	STREAM	
category	Unit	Total	Manufacturing		Distribution	Installation	Use and maintenance	End-of-life		
GWP – total	kg CO₂ eq.	2.24E+00	2.03E+00	1.16E-01	1.87E-02	2.35E-02	2.39E-02	3.11E-02		
GWP – fossil	kg CO₂ eq.	2.28E+00	2.04E+00	1.78E-01	1.86E-02	2.67E-03	2.30E-02	2.32E-02		
GWP – biogenic	kg CO₂ eq.	-4.71E-02	-1.34E-02	-6.32E-02	1.70E-05	2.08E-02	8.50E-04	7.91E-03		
GWP – luluc	kg CO₂ eq.	6.57E-03	6.09E-03	3.96E-04	9.11E-06	8.10E-07	5.76E-05	1.94E-05		
ODP	kg CFC-11 eq.	6.08E-08	4.89E-08	1.08E-08	4.08E-10	3.10E-11	4.14E-10	2.49E-10		
AP	mol H+ eq.	7.99E-02	7.84E-02	1.21E-03	7.71E-05	8.24E-06	1.16E-04	8.59E-05		
EP – freshwater	kg P eq.	6.30E-03	6.22E-03	5.33E-05	1.31E-06	2.31E-07	2.10E-05	4.77E-06		
EP - marine	kg N eq.	5.33E-03	4.78E-03	3.62E-04	2.94E-05	1.04E-05	2.06E-05	1.27E-04		
EP – terrestrial	mol N eq.	6.70E-02	6.17E-02	4.54E-03	3.14E-04	3.50E-05	1.81E-04	2.58E-04		
POCP	kg NMVOC eq.	2.00E-02	1.86E-02	1.10E-03	1.13E-04	1.18E-05	5.84E-05	8.72E-05		
ADP – minerals and metals	kg Sb eq.	1.03E-03	1.02E-03	1.33E-06	6.02E-08	5.05E-09	4.58E-08	1.32E-07		
ADP – fossil	MJ, net calorific value	3.65E+01	3.32E+01	2.25E+00	2.66E-01	2.14E-02	5.30E-01	2.27E-01		
WDP	m ³ eq.	1.60E+00	1.53E+00	5.38E-02	1.08E-03	1.15E-04	5.42E-03	3.21E-03		

GWP-fossil: Global Warming Potential fossil; GWP-biogenic: Global Warming Potential biogenic; GWP-luluc: Global Warming Potential land use and land use change; ODP: Depletion potential of the stratospheric ozone layer; AP: Acidification potential; EP-freshwater: Eutrophication potential-freshwater compartment; EP-marine: Eutrophication potential-marine compartment; EP-terrestrial: Eutrophication potential-accumulated exceedance; POCP: Formation potential of tropospheric ozone; ADPminerals & metals: Abiotic Depletion for non-fossil resources potential; ADP-fossil: Abiotic Depletion for fossil resources potential; WDP: Water deprivation potential.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE			
Approved	Public	1VLG101254	А	EN	13/19			
© Copyright 2024 ABB. All rights reserved.								

ENVIRONMENTAL PRODUCT DECLARATION

			Cradle-	to-gate				
			Cradle-to-grave					
Resource use	Resource use		UPSTREAM	CORE		DOWNS	STREAM	
parameters	Unit	Total	Manufa	cturing	Distribution	Installation	Use and maintenance	End-of-life
PENRE	MJ, low cal. value	3.01E+01	2.69E+01	2.21E+00	2.66E-01	2.14E-02	5.30E-01	2.27E-01
PERE	MJ, low cal. value	1.09E+01	4.51E+00	6.29E+00	4.13E-03	4.65E-04	1.02E-01	1.63E-02
PENRM	MJ, low cal. value	6.32E+00	6.28E+00	4.04E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PERM	MJ, low cal. value	7.40E-01	1.55E-01	5.84E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PENRT	MJ, low cal. value	3.65E+01	3.32E+01	2.25E+00	2.66E-01	2.14E-02	5.30E-01	2.27E-01
PERT	MJ, low cal. value	1.17E+01	4.66E+00	6.88E+00	4.13E-03	4.65E-04	1.02E-01	1.63E-02
FW	m³	4.12E-02	3.89E-02	1.71E-03	3.79E-05	4.54E-06	4.14E-04	1.07E-04
MS	kg	2.52E-02	2.40E-02	1.18E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF	МЈ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRSF	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

PENRE: Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw material; PERE: Use of renewable primary energy excluding renewable primary energy resources used as raw material; PENRM: Use of non-renewable primary energy resources used as raw material; PENRM: Use of renewable primary energy resources used as raw material; PENRT: Total use of non-renewable primary energy resources (primary energy and primary energy resources used as raw materials); PERT: Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials); PERT: Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials); PERT: Notal use of renewable primary energy resources (primary energy and primary energy resources used as raw materials); PERT: Notal use of renewable primary energy resources (primary energy and primary energy resources used as raw materials); PERT: Notal use of renewable primary energy resources (primary energy and primary energy resources used as raw materials); PERT: Notal use of renewable primary energy resources (primary energy and primary energy resources used as raw materials); FW: Net use of fresh water; MS: Use of secondary materials; RFS: Use of renewable secondary fuels; NRSF: Use of non-renewable secondary fuels.

			Cradle-	to-gate					
			Cradle-to-grave						
System output	it .	Tabal	UPSTREAM	CORE		DOWNS	STREAM		
indicators	Unit	Total	Manufa	turing Distributio:	Distribution	Installation	Use and maintenance	End-of-life	
HWD	kg	1.31E-03	1.29E-03	1.98E-05	1.69E-06	1.24E-07	6.71E-07	1.01E-06	
NHWD	kg	7.24E-01	4.80E-01	4.67E-02	1.30E-02	1.77E-02	1.45E-03	1.65E-01	
RWD	kg	5.20E-05	4.43E-05	3.33E-06	8.64E-08	9.02E-09	3.86E-06	3.32E-07	
MER	kg	1.50E-02	0.00E+00	1.80E-03	0.00E+00	1.32E-02	0.00E+00	0.00E+00	
MFR	kg	1.77E-01	1.74E-02	1.52E-02	0.00E+00	1.96E-02	0.00E+00	1.25E-01	
CRU	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
ETE	MJ	6.05E-02	0.00E+00	5.14E-03	0.00E+00	5.54E-02	0.00E+00	0.00E+00	
EEE	MJ	3.33E-02	0.00E+00	2.50E-03	0.00E+00	3.08E-02	0.00E+00	0.00E+00	

HWD: hazardous waste disposed; NHWD: non-hazardous waste disposed; RWD: radioactive waste disposed; MER: materials for energy recovery; MFR: material for recycling; CRU: components for reuse; ETE: exported thermal energy; EEE: exported electricity energy.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	1VLG101254	A	EN	14/19
© Copyright 2024 ABB. All r	ights reserved				, -

Sensitivity analysis

This chapter presents the results of a sensitivity analysis, to understand how the impact category "GWP – total" varies in different scenarios. A theoretical waste scenario has been evaluated, where is assumed that all the components of the sensor are recycled according to the single material recyclability of IEC/TR 62635 (Annex D.3), a recyclability potential of up to 71.47 % can be achieved.

Indicators	Unit	Total	UPSTREAM	CORE	DOWNSTREAM			
Indicators	Unit	Iotai	Manufa	cturing	Distribution	Installation	Use and maintenance	End-of-life
GWP – total	kg CO₂ eq.	2.26E+00	2.03E+00	1.16E-01	1.87E-02	2.35E-02	2.39E-02	4.53E-02
MFR	kg	2.37E-01	1.74E-02	1.52E-02	0.00E+00	1.96E-02	0.00E+00	1.85E-01

Sensitivity analysis is added to understand how a different nominal current affects environmental impact during use stage. Calculation of losses for KECA 80 C85 with nominal current 4 000 A is added, because in some cases the nominal current can rise to this value.

Calculation of losses for KECA 80 C85 with nominal current 4 000 A:

$$\Delta P_{use} = 0.00203^2 * 3700 = 0.0152 W$$

 $E_{use}[kWh] = \frac{0.0152 * 8760 * 20}{1000} = 2.668 \, kWh$

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	1VLG101254	A	EN	15/19
© Copyright 2024 ABB. All rights	reserved.	1			

KECA 80 C85 with nominal current 4 000 A

			Cradle-t	o-gate				
					Cradle-t	o-grave		
Impact			UPSTREAM	CORE		STREAM		
category	Unit	Total	Manufa	cturing	Distribution Installation		Use and maintenance	End-of-life
GWP – total	kg CO₂ eq.	3.18E+00	2.03E+00	1.16E-01	1.87E-02	2.35E-02	9.65E-01	3.11E-02
GWP – fossil	kg CO₂ eq.	3.19E+00	2.04E+00	1.78E-01	1.86E-02	2.67E-03	9.28E-01	2.32E-02
GWP – biogenic	kg CO₂ eq.	-1.37E-02	-1.34E-02	-6.32E-02	1.70E-05	2.08E-02	3.42E-02	7.91E-03
GWP – luluc	kg CO₂ eq.	8.84E-03	6.09E-03	3.96E-04	9.11E-06	8.10E-07	2.32E-03	1.94E-05
ODP	kg CFC-11 eq.	7.70E-08	4.89E-08	1.08E-08	4.08E-10	3.10E-11	1.67E-08	2.49E-10
AP	mol H+ eq.	8.45E-02	7.84E-02	1.21E-03	7.71E-05	8.24E-06	4.66E-03	8.59E-05
EP – freshwater	kg P eq.	7.13E-03	6.22E-03	5.33E-05	1.31E-06	2.31E-07	8.47E-04	4.77E-06
EP – marine	kg N eq.	6.14E-03	4.78E-03	3.62E-04	2.94E-05	1.04E-05	8.28E-04	1.27E-04
EP – terrestrial	mol N eq.	7.41E-02	6.17E-02	4.54E-03	3.14E-04	3.50E-05	7.31E-03	2.58E-04
POCP	kg NMVOC eq.	2.23E-02	1.86E-02	1.10E-03	1.13E-04	1.18E-05	2.35E-03	8.72E-05
ADP – minerals and metals	kg Sb eq.	1.03E-03	1.02E-03	1.33E-06	6.02E-08	5.05E-09	1.85E-06	1.32E-07
ADP – fossil	MJ, net calorific value	5.73E+01	3.32E+01	2.25E+00	2.66E-01	2.14E-02	2.14E+01	2.27E-01
WDP	m³ eq.	1.81E+00	1.53E+00	5.38E-02	1.08E-03	1.15E-04	2.18E-01	3.21E-03

GWP-fossil: Global Warming Potential fossil; GWP-biogenic: Global Warming Potential biogenic; GWP-luluc: Global Warming Potential land use and land use change; ODP: Depletion potential of the stratospheric ozone layer; AP: Acidification potential; EP-freshwater: Eutrophication potential-freshwater compartment; EP-marine: Eutrophication potential-marine compartment; EP-terrestrial: Eutrophication potential-accumulated exceedance; POCP: Formation potential of tropospheric ozone; ADPminerals & metals: Abiotic Depletion for non-fossil resources potential; ADP-fossil: Abiotic Depletion for fossil resources potential; WDP: Water deprivation potential.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	1VLG101254	А	EN	16/19
© Copyright 2024 ABB. All rights	s reserved.		·		

			Cradle-	to-gate				
					Cradle-t	o-grave		
Resource use		T I	UPSTREAM	CORE		DOWNS	STREAM	
parameters	Unit	Total	Manufacturing		Distribution	Installation	Use and maintenance	End-of-life
PENRE	MJ, low cal. value	5.10E+01	2.69E+01	2.21E+00	2.66E-01	2.14E-02	2.14E+01	2.27E-01
PERE	MJ, low cal. value	1.49E+01	4.51E+00	6.29E+00	4.13E-03	4.65E-04	4.10E+00	1.63E-02
PENRM	MJ, low cal. value	6.32E+00	6.28E+00	4.04E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PERM	MJ, low cal. value	7.40E-01	1.55E-01	5.84E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PENRT	MJ, low cal. value	5.73E+01	3.32E+01	2.25E+00	2.66E-01	2.14E-02	2.14E+01	2.27E-01
PERT	MJ, low cal. value	1.57E+01	4.66E+00	6.88E+00	4.13E-03	4.65E-04	4.10E+00	1.63E-02
FW	m³	5.75E-02	3.89E-02	1.71E-03	3.79E-05	4.54E-06	1.67E-02	1.07E-04
MS	kg	2.52E-02	2.40E-02	1.18E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF	МЈ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRSF	МЈ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

PENRE: Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw material; PERE: Use of renewable primary energy excluding renewable primary energy resources used as raw material; PENRM: Use of non-renewable primary energy resources used as raw material; PENRM: Use of renewable primary energy resources used as raw material; PENRT: Total use of non-renewable primary energy resources (primary energy and primary energy resources used as raw materials); PERT: Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials); PERT: Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials); PERT: Notal use of renewable primary energy resources (primary energy and primary energy resources used as raw materials); PERT: Notal use of renewable primary energy resources (primary energy and primary energy resources used as raw materials); PERT: Notal use of renewable primary energy resources (primary energy and primary energy resources used as raw materials); PERT: Notal use of renewable primary energy resources (primary energy and primary energy resources used as raw materials); FW: Net use of fresh water; MS: Use of secondary materials; RFS: Use of renewable secondary fuels; NRSF: Use of non-renewable secondary fuels.

			Cradle-1	to-gate				
					Cradle-t	o-grave		
System output			UPSTREAM	CORE		DOWNS	STREAM	
indicators	Unit	Total	Manufa	cturing	Distribution	Installation	Use and maintenance	End-of-life
HWD	kg	1.34E-03	1.29E-03	1.98E-05	1.69E-06	1.24E-07	2.71E-05	1.01E-06
NHWD	kg	7.81E-01	4.80E-01	4.67E-02	1.30E-02	1.77E-02	5.86E-02	1.65E-01
RWD	kg	2.04E-04	4.43E-05	3.33E-06	8.64E-08	9.02E-09	1.56E-04	3.32E-07
MER	kg	1.50E-02	0.00E+00	1.80E-03	0.00E+00	1.32E-02	0.00E+00	0.00E+00
MFR	kg	1.77E-01	1.74E-02	1.52E-02	0.00E+00	1.96E-02	0.00E+00	1.25E-01
CRU	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
ETE	MJ	6.05E-02	0.00E+00	5.14E-03	0.00E+00	5.54E-02	0.00E+00	0.00E+00
EEE	MJ	3.33E-02	0.00E+00	2.50E-03	0.00E+00	3.08E-02	0.00E+00	0.00E+00

HWD: hazardous waste disposed; NHWD: non-hazardous waste disposed; RWD: radioactive waste disposed; MER: materials for energy recovery; MFR: material for recycling; CRU: components for reuse; ETE: exported thermal energy; EEE: exported electricity energy.

© Copyright 2024 ABB. All r	ights received				, -
Approved	Public	1VLG101254	A	EN	17/19
STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE

Additional Environmental Information

Circularity Values

The recyclability potential of the product (excluding packaging) is calculated by dividing "MFR: material for recycling" in the end-of-life stage by the total weight of the product. As a result, the recyclability potential of the product is 44.23 %. The result is representative for Europe according to IEC/TR 62635.

	Recyclability potential
KECA 80 C85	44.23 %

However, according to the theoretical end-of-life scenario shown in the Sensitivity Analysis chapter, where is assumed that all the components of the sensor are recycled according to single material recyclability of IEC/TR 62635 (Annex D.3), a recyclability potential of up to 65.40 % can be achieved.

Greenhouse gas emissions from the use of electricity in the manufacturing phase

Production mix from import, medium voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process.

Energy mix	Source	Amount	Unit
ABB_Electricity mix CZ factory {CZ}_biomass49%_PV30%_Wind21%_2023 S_SMP_V1	Ecoinvent v3.9.1	0.068	kg CO₂- eq/kWh

Dangerous substances

The product complies with REACH and RoHS directive requirements and does not contain any of the listed materials in excess of the authorized proportions.

For further information about REACH and RoHS, please visit the ABB webpage: https://new.abb.com/contact/form

Indoor environment

The product meets the requirements for low emissions.

Carbon footprint

Carbon footprint has not been worked out for the product.

	PAGE
G101254 A EN	18/19
G1	01254 A EN

References

Vybiralova N., Zoufala A. (2024). *Life Cycle Assesment Report: KECA 80 C85 and KECA 80 D85 (Report No. 1VLG101184 rev A*). ABB Switzerland Ltd, Group Technology Management

ecoinvent. ecoinvent v3.9.1 (2022). https://ecoinvent.org/the-ecoinvent-database/data-releases/ecoinvent-3-9-1/

- European Committee for Standardization. (2019). *Product category rules for life cycle assessments of electronic and electrical products and systems* (EN 50693:2019).
- European Committee for Standardization. (2019). *Sustainability of constructions Environmental product declarations* (EN 15804:2012+A2:2019).

Eurostat. (2021). Packaging waste by waste management operations.

https://ec.europa.eu/eurostat/databrowser/view/ENV_WASPAC/default/table?lang=en

ICMQ S.p.A. (2023). *PCR EPDItaly007-Electronic and electrical products and systems*, rev. 3.0 (2023-01-13). EPDItaly. https://www.epditaly.it/en/view-pcr/

ICMQ S.p.A. (2022). *PCR EPDItaly015 - Electronic and electrical products and systems - switchboards*, rev. 1.5 (2022-02-23). EPDItaly. https://www.epditaly.it/en/view-pcr/

ICMQ S.p.A (2020b). *Regulations of the EPDItaly Programme Regulations*, rev. 5.2 (2020-02-16). EPDItaly. https://www.epditaly.it/en/wp-content/uploads/2016/12/EPDITALY-Regulament_rev-5.2_EN.pdf

International Electrotechnical Commission. (2012). *Guidelines for end-of-life information provided by manufacturers and recyclers and for recyclability rate calculation of electrical and electronic equipment*, Edition 1.0 (2012-10-1) (IEC/TR 62635).

International Organization for Standardisation. (2006). *Environmental management - Life cycle assessment - Principles and framework* (ISO Standard No. 14040:2006).

https://www.iso.org/standard/37456.html

International Organization for Standardisation. (2006). *Environmental management - Life cycle assessment - Requirements and guidelines* (ISO Standard No. 14044:2006). https://www.iso.org/standard/38498.html

PRé Sustainability. (2023). SimaPro (version 9.5) [computer software]. https://pre-

sustainability.com/solutions/tools/simapro/

SeaRates. (2022). *Shipping Distances & Time Calculator*. https://www.searates.com/services/distances-time The Norwegian EPD Foundation/EPD-Norge. (2019). *General Programme Instructions 2019*, Version 3.0 (2019-04-24). https://www.epd-norge.no/getfile.php/1340010-

1685100696/Dokumenter/GPI%20Det%20norske%20EPD%20programmet%20approved%20240419 %20-%20ver3%20updated%20250523.pdf

	Program Operator a	nd publisher					
C epd-norge		•	Ph.	+47	23 08 8	30 00	
The Norwegian EPD Foundation	Post Box 5250 Major	stuen,	email	pos	t@epd	-norge.n	0
	0303 Oslo, Norway		web	ww	w.epd-r	norge.no	1
	Owner of the declara	ation					
	ABB Swizerland Ltd,	Group					
	Technology Manager	ment					
	Brown Boveri Straße	6, 5400	web	14/14/	w.abb.c	om	
	Baden, Switzerland		web	~~~~	w.abb.c	.0111	
	Author						
	Natalie Vybiralova						
	ABB s.r.o., Videnska	117	email	nata	alie.vyb	iralova@	cz.abb.com
	619 00 Brno, Czechia	L	web	ww	w.abb.c	com	
		1			1		
SECU	IRITY LEVEL	DOCUMENT ID.			REV.	LANG.	PAGE

© Copyright 2024 ABB. All rights reserved.					
Approved	Public	1VLG101254	A	EN	19/19
STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE