

EPD

Environmental Product Declaration

NALF – MV indoor air switch-fuse combination

Production site: Przasnysz, Poland

DOCUMENT KIND	IN COMPLIANCE WITH	IN COMPLIANCE WITH			
Environmental Product Declaration	ISO 14025 and EN 50693				
PROGRAM OPERATOR	PUBLISHER	PUBLISHER			
The Norwegian EPD Foundation	The Norwegian EPD Foundation				
REGISTRATION NUMBER OF THE PROGRAM OPERATOR	ISSUE DATE	ISSUE DATE			
NEPD-7970-7495-EN	2024-10-29	2024-10-29			
VALID TO	STATUS	STATUS SECURITY LEVEL			
2029-10-29	Approved	Approved Public			
OWNING ORGANIZATION	ABB DOCUMENT ID	REV.	LANG.	PAGE	
ABB Switzerland Ltd, Group Technology Management	PR24-TC-010 C EN 1/19			1/19	
© Copyright 2024 ABB. All rights reserved.					

EPD Owner Organization No.	ABB Switzerland Ltd, Group Technology Management CHE-101 538 426	
Manufacturer name	ABB Sp Z o.o.	
and address	Leszno 59, 06 300 Przasnysz, Poland	
Company contact	adam.durski@pl.abb.com	
Program operator	The Norwegian EPD Foundation	
	Post Box 5250 Majorstuen, 0303 Oslo, Norway	
	phone: +47 23 08 80 00, email: post@epd-norge.no	
Declared product	NALF – MV indoor air switch-fuse combination	
Product description	The NALF is able to extinguish electric arcs and enables high switching capacity, they represent breaking element for applications in enclosed switchgear and transformer compact substations. In combination with current limiting fuses, NALF ensure control over the full range starting from rated current up to short-circuit current. The main areas of application are medium voltage networks.	
Functional unit	The functional unit of this study is to ensure control over the full range of overload and short-circuit current, at nominal voltage of 24 kV and effective time rate (use rate) is 30% considering that during this time the load is 50%, during a service life of 20 years in Europe.	:
Reference flow	A single NALF-H 24 with pole distance 235mm (P235) switch-fuse combination, including packaging.	
Independent verification	Independent verification of the declaration and data, according to ISO 14025:2010	
	Independent verifier approved by EPD-Norge: Elisabet Amat	
	Simulation (K)	
	Signature:	
Approved by	Håkon Hauan, CEO EPD-Norge	
	Signature:	
Reference PCR	EN 50693:2019 – Product Category Rules for Life Cycle Assessments of Electronic and	I
	EPDItaly007 – Electronic and Electrical Products and Systems, Rev. 3.0, 2023/01/13.	
	2020/03/16	
Program	The Norwegian EPD Foundation/EPD-Norge. General Programme Instructions 2019.	
instructions	Version 3.0, 2019/04/24.	
LCA study	This EPD is based on the LCA study described in the LCA report PR24-TC-009.	
EPD type	Specific product	
EPD scope	Cradle-to-grave	
Product RSL	20 years	
Geographical	Manufacturing (suppliers): Manufacturing (ABB): Downstream:	
Peference year	Giobal Poland Europe	
I CA software	2023	
ECASOICHAIC	2023 SimaPro 9 5 (2023)	
LCI database	2023 SimaPro 9.5 (2023) Ecoinvent v3.9.1 (2022)	
LCI database Comparability	2023 SimaPro 9.5 (2023) Ecoinvent v3.9.1 (2022) EPDs published within the same product category, though originating from different	
LCI database Comparability	2023 SimaPro 9.5 (2023) Ecoinvent v3.9.1 (2022) EPDs published within the same product category, though originating from different programs, may not be comparable. Full conformance with a PCR allows EPD comparability only when all stages of a life cycle have been considered. However, variations and deviations are possible.	:
LCI database Comparability Liability	 2023 SimaPro 9.5 (2023) Ecoinvent v3.9.1 (2022) EPDs published within the same product category, though originating from different programs, may not be comparable. Full conformance with a PCR allows EPD comparability only when all stages of a life cycle have been considered. However, variations and deviations are possible. The owner of the declaration shall be liable for the underlying information and evidence. EPD-Norge shall not be liable with respect to manufacturer, life cycle assessment data, and evidence. 	

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	PR24-TC-010	с	EN	2/19
© Copyright 2024 ABB. All rights reserved.					

Contents

Sustainability at ABB	4
General Information	5
Constituent Materials	7
LCA Background Information	9
Inventory Analysis	
Environmental Indicators	
Extrapolation rules	15
Sensitivity analysis	
Additional Environmental Information	
References	

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	PR24-TC-010	с	EN	3/19
© Copyright 2024 ABB. All rights reserved.					

ABB is a leading global technology company that energizes the transformation of society and industry to achieve a more productive, sustainable future. By connecting software to its electrification, robotics, automation, and motion portfolio, ABB pushes the boundaries of technology to drive performance to new levels.

At ABB, we actively contribute to a more sustainable world, leading by example in our own operations and partnering with customers and suppliers to enable a low-carbon society, preserve resources, and promote social progress.

Learn more on our website <u>global.abb/group/en/sustainability</u> or scan the QR code.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	PR24-TC-010	с	EN	4/19
© Copyright 2024 ABB. All rights reserved.					

General Information

This Environmental Product Declaration is a "specific product EPD" with extrapolation rules. A representative product configuration is declared as reference product, and the results can be extrapolated for other configurations according to the provided extrapolation rules. The EPD covers the following devices of the NALF Family, including related packaging:

- NALF 12/ NALF-H 12, NALFO 12/NALFO-H 12
- NALF 17/ NALF-H 17
- NALF 24/NALF-H 24, NALFO 24/NALFO-H 24
- NALF 36, NALFO 36

NALF-H is indoor air switch-fuse combination designed for operation in harsh operating conditions. In this version, insulators have longer creepage distance and they are made of indoor epoxy more resistant against water condensation conditions. The insulators in standard NALF version are made of BMC (Bulk Molding Compound). The NALF is switch-fuse combination with fuse-base on pivot side and NALFO is switch-fuse combination with fuse-base on opening side provides.

The apparatus can be equipped with high variety of fuse ratings, and they are provided to customers without fuses. The fuse links are supplied separately to end customer according to needs. That is why this study does not include calculations for fuses. The life cycle assessment for fuses will be included in the appropriate study.

The reference flow is a single NALF-H 24 P235 device, because this configuration was the most produced in 2023.

General technical specifications of the NALF Family are presented below.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	PR24-TC-010	с	EN	5/19
© Copyright 2024 ABB. All rights reserved.					

	Description	NALF-H 12 NALFO- H 12	NALF 12 NALFO 12	NALF 17/ NALF- H 17	NALF- 24 / NALFO 24	NALF-H 24/ (Ref. product) NALFO- H 24	NALF 36 NALFO 36	
Size	Pole distance [mm]	150 210	150 170 210	170 210	235 275	235 (Ref. product) 275	360	
	Rated voltage [kV]	12	12	17	24	24	36	
	Rated normal current with fuses [A]	According fuse reference list						
	Rated short- circuit current [kA _{RMS}]	63	63	63	63	63	20	
Ratings	Rated transfer current [A]	1600	1600	1240	920	920	122	
	Rated power- frequency withstand voltage [kV]	28 / 32	28 / 32	38/45	50 / 60	50 / 60	80 / 88	
	Rated lightning impulse withstand voltage[kV]	75 / 85	75 / 85	95 / 110	125 / 145	125 / 145	170 / 195	

The NALF is manufactured by ABB Sp. z o.o. Poland manufacturing site located in Przasnysz.

The manufacturing site is certified according to the following standards:

- ISO 9001:2015 Quality Management Systems
- ISO 14001:2015 Environmental Management Systems
- ISO 45001:2018 Occupational Health and Safety Management Systems

The NALF family is produced in two different geographical locations in Przasnysz, Poland and in 10th of Ramadan City, Egypt. The main production site is the plant in Przasnysz, where all configurations of the NALF family are produced, and these relays are sold globally. The plants in 10th of Ramadan City focus on local markets and production includes only a few configurations of the NALF family. However, in this EPD, only the NALF Family manufactured Przasnysz, Poland is considered in the main scenario. Additional scenarios are considered in the Sensitivity Analysis chapter, including NALF manufactured in Egypt.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	PR24-TC-010	с	EN	6/19
© Copyright 2024 ABB. All rights reserved.					

Constituent Materials

Materials	Name	Weight [kg]	Weight %
	Steel, low-alloyed	31.866	48.547%
	Steel, stainless	0.066	0.101%
Metals	Copper	5.940	9.049%
Metals	Brass	3.893	5.931%
	Bronze	0.023	0.035%
	Zamak	0.107	0.162%
	Polybutylene	0.050	0.076%
	Polyamide	0.700	1.066%
	Polycarbonate	0.055	0.084%
	Polyester	0.001	0.002%
Plastics	Polyoxymethylene	0.186	0.283%
	Polypropylene	0.113	0.172%
	PTFE Teflon	0.008	0.012%
	Epoxy resin	22.428	34.168%
	ABS	0.139	0.212%
	Tungsten Copper Alloy (75%-25%)	0.013	0.020%
	Tungsten Copper Alloy (80%-20%)	0.010	0.015%
Other	Lubricating oil	0.006	0.009%
	Hot melt adhesive	0.006	0.009%
	Rubber	0.030	0.046%
Total		65.64	100

The NALF-H 24 P235 weighs 65.64 kg, and the constituent materials are presented below.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	PR24-TC-010	с	EN	7/19
© Copyright 2024 ABB. All rights reserved.					

The packaging materials weighs 11.058 kg, and the constituent materials are presented below.

Description	Material	Weight [kg]	Weight %
Packaging box	Cardboard	7.86	71.08
Pallet	Wood	2.888	26.12
Manuals	Paper	0.31	2.80
Total		11.058	100

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE				
Approved	Public	PR24-TC-010	с	EN	8/19				
© Copyright 2024 ABB. All rights reserved.									

LCA Background Information

Functional Unit

The functional unit of this study is to ensure control over the fill range of overload and short-circuit current, at nominal voltage of 24 kV and effective time rate (use rate) is 30% considering that during this time the load is 50%, during a service life of 20 years in Europe. The reference flow is a single NALF-H 24 with pole distance 235mm (P235) device, including related accessories and packaging.

Note, the reference service life (RSL) of 20 years is a theoretical period selected for calculation purposes only – this is not representative for the minimum, average, nor actual service life of the product.

System Boundaries

The life cycle assessment is a "cradle-to-grave" analysis, and the system boundaries are defined according to EN 50693, as required by the PCR. For transparency reasons, the manufacturing stage is further divided into an upstream and core stage.

Data quality

Both primary and secondary data are used. The main sources for primary data are the bill of materials and technical drawings, while site specific foreground data are provided by ABB. Furthermore, information and data obtained from other LCA studies are also used.

For all processes for which primary data are not available, generic data originating from the ecoinvent v3.9.1 database, "allocation, cut-off by classification", are used. The

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE				
Approved	Public	PR24-TC-010	с	EN	9/19				
© Copyright 2024 ABB. All rights reserved.									

database Industry Data 2.0 is also used for *Polyoxymethylene (POM)/EU-27* which is not available by ecoinvent. The LCA software used for the calculations is SimaPro 9.5.

Allocation rules

The utility consumption and waste generation of ABB's plant in the manufacturing stage are allocated to the production of one NALF by using allocation rules. Since the factory produces several products (apparatus and switchgears), only a part of the environmental impact has been allocated to the NALF production line. Surface area of each product line was chosen as partition co-efficient, as most accurate representation of manufacturing and wastes share. The amounts al-located to the production of NALF were divided by production volumes.

For the end-of-life allocation, the "Polluter Pays" principle is adopted according to what is defined in the CEN/TR 16970 standard, as required by EPDItaly007. However, the potential benefits and avoided loads from recovery and recycling processes are not considered because it is not required by the PCR.

Cut-off criteria

According to Standard PCR EPDItaly012, the cut-off criteria can be set to a maximum of 2 % of total weight of the device.

The raw material life cycle stage includes the extraction of raw materials. No cut-off rules were used to hide significant impact.

In this LCA, sticking labels on the packaging have been excluded as their weights are negligible small compared to the whole device.

Surface treatments like silver, nickel and zinc plating have been considered in the LCA model.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE				
Approved	Public	PR24-TC-010	с	EN	10/19				
© Copyright 2024 ABB. All rights reserved.									

Inventory Analysis

Manufacturing Stage (upstream)

The life cycle inventory in the upstream manufacturing stage is based on the primary data available from ABB. Datasets are applied accordingly, to the best of our knowledge, to represent each material, manufacturing process, and surface treatment.

Additionally, supply chain transports are added as far as data is available between ABB, the suppliers, and sub-suppliers. Only primary suppliers are considered. The rest of the transports are assumed to already be included in ecoinvent's "market for" processes.

Manufacturing Stage (core)

In the core manufacturing stage, utility consumption and waste generation at the ABB manufacturing site are accounted for. The packaging materials and accessories associated with the product are also considered. Modelling decisions and assumptions that are highly relevant to the results are as following:

• 100% renewable electricity is considered, which is procured by the ABB manufacturing site through Guarantees of Origins (GO's). However, due to the lack of life cycle based residual mix data, other electricity mixes in the LCA are not calculated with residual mix.

Distribution

The transport distance from the ABB manufacturing site to the site of installation is assumed to be 300 km by lorry, as suggested by the PCR EPDItaly012, as the actual distance is unknown. The environmental impacts can be multiplied accordingly if the actual distance is known.

	Dataset	Amount	Unit	Represent.
Transport	<i>Transport, freight, lorry 16-32 metric ton, EURO4 {RER}</i>	300	km	PCR / Assumption

Installation

The installation phase only implies manual activities, and no energy is consumed. Therefore, this phase only considers the end-of-life of the packaging materials used.

	Scenario	Transport	Representation
Packaging End-of-Life	<i>Packaging waste by waste management operations</i> (Eurostat, 2021)	100 km by lorry (assumption)	Europe

*Due to lack of data from Eurostat, 100% landfill is assumed for ceramics (e.g., bentonite)

Use

The use stage considers the reference power consumption over the reference service life of 20 years as defined in the functional unit. This is calculated using the following formula, according to PCR:

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE				
Approved	Public	PR24-TC-010	с	EN	11/19				
© Copyright 2024 ABB. All rights reserved.									

$$E_{use}[kWh] = \frac{P_{use} * 8760 * RSL * \alpha}{1000} = \frac{P_{use} * 8760 * 20 \text{ years * a}}{1000}$$
$$P_{use}[W] = 3 * R * (0.5 * I)^2 = 0.936 W$$
$$E_{use}[kWh] = \frac{0.936 * 8760 * 20 * 0.3}{1000} = 49.196 \, kWh$$

Where:

- *E*_{use} = Power consumption in kWh
- *P*_{use} = *Reference power consumption in watts*
- RSL = Reference Service Life in years 20 years
- *α* = Use time rate 0,3
- I = Nominal current 80 A
- R = Internal resistance 0.00015 Ω
- 8760 is the number of hours in a year
- 1000 is the conversion factor from W to kW

Because this product is sold globally and is not limited to any specific country, the latest energy mix of the European Union is adopted as suggested by the standard EN 50693. The emission factor of the energy mix is presented below.

	Dataset	Amount	Unit	Represent.
Energy	Electricity, medium voltage {RER} market group for electricity, medium voltage Cut-off, S	0.368	kg CO₂- eq./kWh	Europe

The maintenance happens during the use phase, but it implies manual and visual activities only, from the environmental impacts point of view can be omitted from the analysis.

End of life

Decommissioning of the product only implies manual activities, and no energy is consumed. Therefore, this phase only considers the end-of-life of the product.

	Scenario	Transport	Representation
Product End-of-Life	IEC/TR 62635 (Annex D.3)*	100 km by lorry (assumption)	Europe

*A conservative approach is adopted by considering all parts as either: requiring selective treatment, difficult to process, or going through a separation process; no individual part is considered as a single recyclable material.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE				
Approved	Public	PR24-TC-010	с	EN	12/19				
© Convright 2024 ABB, All rights reserved									

Environmental Indicators

In accordance with the PCR EPDItaly007, the environmental impact indicators are determined by using the characterization factors and impact assessment methods specified in EN 15804:2012+A2:2019

NALF-H 24 P235

			Cradle-	to-gate				
					Cradle-t	o-grave		
Impact	llmit	Tetal	UPSTREAM	CORE		DOWNS	STREAM	
category	onic	TOLAI	Manufa	cturing	Distribution	Installation	Use and maintenance	End-of-life
GWP – total	kg CO₂ eq.	4.709E+02	4.108E+02	2.494E+01	4.308E+00	4.153E+00	1.779E+01	8.882E+00
GWP – fossil	kg CO₂ eq.	4.507E+02	4.043E+02	1.791E+01	4.302E+00	2.728E-01	1.711E+01	6.739E+00
GWP – biogenic	kg CO₂ eq.	1.951E+01	5.962E+00	6.894E+00	3.917E-03	3.880E+00	6.314E-01	2.135E+00
GWP – luluc	kg CO₂ eq.	7.071E-01	5.129E-01	1.408E-01	2.103E-03	1.415E-04	4.281E-02	8.322E-03
ODP	kg CFC-11 eq.	4.814E-05	4.724E-05	4.263E-07	9.422E-08	6.265E-09	3.075E-07	7.150E-08
АР	mol H+ eq.	7.990E+00	7.760E+00	9.441E-02	1.781E-02	1.467E-03	8.591E-02	3.044E-02
EP – freshwater	kg P eq.	6.413E-01	6.093E-01	1.391E-02	3.031E-04	3.028E-05	1.562E-02	2.087E-03
EP – marine	kg N eq.	7.465E-01	6.743E-01	3.711E-02	6.796E-03	2.227E-03	1.527E-02	1.078E-02
EP – terrestrial	mol N eq.	8.883E+00	8.328E+00	2.605E-01	7.254E-02	5.863E-03	1.347E-01	8.099E-02
РОСР	kg NMVOC eq.	2.756E+00	2.579E+00	8.062E-02	2.608E-02	2.316E-03	4.342E-02	2.531E-02
ADP – minerals and metals	kg Sb eq.	9.666E-02	9.651E-02	5.339E-05	1.391E-05	8.143E-07	3.405E-05	5.112E-05
ADP – fossil	MJ, net calorific value	6.631E+03	5.862E+03	2.355E+02	6.139E+01	3.772E+00	3.940E+02	7.458E+01
WDP	m³ eq.	1.723E+02	1.624E+02	4.667E+00	2.492E-01	4.664E-02	4.025E+00	9.044E-01

GWP-fossil: Global Warming Potential fossil; GWP-biogenic: Global Warming Potential biogenic; GWP-luluc: Global Warming Potential land use and land use change; ODP: Depletion potential of the stratospheric ozone layer; AP: Acidification potential; EP-freshwater: Eutrophication potential-freshwater compartment; EP-marine: Eutrophication potential-marine compartment; EP-terrestrial: Eutrophication potential-accumulated exceedance; POCP: Formation potential of tropospheric ozone; ADPminerals & metals: Abiotic Depletion for non-fossil resources potential; ADP-fossil: Abiotic Depletion for fossil resources potential; WDP: Water deprivation potential.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE				
Approved	Public	PR24-TC-010	с	EN	13/19				
© Copyright 2024 ABB. All rights reserved.									

ENVIRONMENTAL PRODUCT DECLARATION

			Cradle-	to-gate				
					Cradle-t	o-grave		
Resource use	Unit	Total	UPSTREAM	CORE		DOWNS	STREAM	
parameters	onic	Total	Manufa	cturing	Distribution	Installation	Use and maintenance	End-of-life
PENRE	MJ, low cal. value	6.307E+03	5.538E+03	2.356E+02	6.139E+01	3.772E+00	3.938E+02	7.458E+01
PERE	MJ, low cal. value	7.126E+02	6.184E+02	1.035E+01	9.527E-01	7.533E-02	7.563E+01	7.172E+00
PENRM	MJ, low cal. value	3.237E+02	3.237E+02	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
PERM	MJ, low cal. value	1.442E+02	0.000E+00	1.442E+02	0.000E+00	0.000E+00	0.000E+00	0.000E+00
PENRT	MJ, low cal. value	6.631E+03	5.862E+03	2.356E+02	6.139E+01	3.772E+00	3.938E+02	7.458E+01
PERT	MJ, low cal. value	8.568E+02	6.184E+02	1.545E+02	9.527E-01	7.533E-02	7.563E+01	7.172E+00
FW	m³	5.065E+00	4.545E+00	1.677E-01	8.749E-03	1.589E-03	3.080E-01	3.447E-02
MS	kg	1.859E+01	1.197E+01	6.623E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
RSF	МЈ	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
NRSF	L	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00

PENRE: Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw material; PERE: Use of renewable primary energy excluding renewable primary energy resources used as raw material; PENRM: Use of non-renewable primary energy resources used as raw material; PENRM: Use of renewable primary energy resources used as raw material; PENRT: Total use of non-renewable primary energy resources (primary energy and primary energy resources used as raw materials); PERT: Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials); PERT: Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials); PERT: Notal use of renewable primary energy resources (primary energy and primary energy resources used as raw materials); PERT: Notal use of renewable primary energy resources (primary energy and primary energy resources used as raw materials); PERT: Notal use of renewable primary energy resources (primary energy and primary energy resources used as raw materials); PERT: Notal use of renewable primary energy resources (primary energy and primary energy resources used as raw materials); FW: Net use of fresh water; MS: Use of secondary materials; RFS: Use of renewable secondary fuels; NRSF: Use of non-renewable secondary fuels.

			Cradle-to-gate						
					Cradle-to-grave				
Waste	11-14	Tatal	UPSTREAM	CORE		DOWNS	STREAM		
indicators	u Unit Iotal	Iotai	Manufacturing		Distribution	Installation	Use and maintenance	End-of-life	
HWD	kg	4.638E-02	4.417E-02	1.020E-03	3.909E-04	2.258E-05	4.989E-04	2.749E-04	
NHWD	kg	1.343E+02	9.351E+01	6.013E+00	3.000E+00	1.971E+00	1.081E+00	2.869E+01	
RWD	kg	1.149E-02	8.175E-03	2.792E-04	1.995E-05	1.456E-06	2.867E-03	1.431E-04	
MER	kg	1.175E+01	0.000E+00	8.977E+00	0.000E+00	1.593E+00	0.000E+00	1.176E+00	
MFR	kg	6.252E+01	9.194E+00	7.552E+00	0.000E+00	7.670E+00	0.000E+00	3.810E+01	
CRU	kg	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
ETE	МЈ	4.704E+01	0.000E+00	3.572E+01	0.000E+00	6.741E+00	0.000E+00	4.577E+00	
EEE	MJ	2.614E+01	0.000E+00	1.985E+01	0.000E+00	3.745E+00	0.000E+00	2.543E+00	

HWD: hazardous waste disposed; NHWD: non-hazardous waste disposed; RWD: radioactive waste disposed; MER: materials for energy recovery; MFR: material for recycling; CRU: components for reuse; ETE: exported thermal energy; EEE: exported electricity energy.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE		
Approved	Public	PR24-TC-010	с	EN	14/19		
© Copyright 2024 ABB. All rights reserved.							

\bigoplus_{r} Extrapolation rules

All the analyzed configurations have the same main functionality, product standards and manufacturing technology, so extrapolation rules are established according to EN 50693. The main differences in the NALF family include:

- insulators from indoor epoxy resin (with H letter) or BMC (Bulk Molding Compound)
- current carrying parts different types and sizes depending on the current and voltage values.
- frame and shaft with the following pole distances:
 - 12 kV pole distance 150 mm, 170 mm and 210 mm
 - 17 kV pole distance 170 mm and 210 mm
 - 24 kV pole distance 235 mm and 275 mm
 - 36 kV pole distance 360 mm
- fuse-base on pivot side (NALF) and fuse-base on opening side provides a basis (NALFO)

Rated currents are from 400 to 1000 A depending on the configuration.

The different life cycle stages can be extrapolated to other configurations of the same product by applying a rule of proportionality to the parameters, presented in the following Table 15. To calculate the environmental impact Indicators for each NALF configuration, the result for the reference product NALF-H 24 P235 should be multiplied by the factor from following table.

Example for calculation of GWP-total for NALF-H 12 P150 configuration in different stages:

GWP-total in Total stage = (4.709E+02* 0.719) = 3.386E+02 kg CO2-eq

GWP-total [kg CO2-eq] – Extrapolation factor								
Confirmation	Tatal	UPSTREAM	CORE		DOWNSTREAM			
Configuration	Total	Manufa	cturing	Distribution	Installation	Use and maintenance	End-of-life	
NALF-H 12 P150	0.719	0.638	0.982	0.681	0.791	2.255	0.661	
NALF-H 12 P210	0.745	0.666	0.982	0.716	0.791	2.255	0.701	
NALF 12 P150	0.634	0.538	0.982	0.643	0.791	2.255	0.812	
NALF 12 P170	0.644	0.548	0.982	0.655	0.791	2.255	0.825	
NALF 12 P210	0.660	0.566	0.982	0.678	0.791	2.255	0.851	
NALF-H 17 P170	0.924	0.897	1	0.908	1	1.437	0.898	
NALF-H 17 P210	0.941	0.916	1	0.930	1	1.437	0.924	
NALF 17 P170	0.792	0.741	1	0.853	1	1.437	1.160	
NALF 17 P210	0.809	0.759	1	0.875	1	1.437	1.186	
NALF-H 24 P235	1	1	1	1	1	1	1	
NALF-H 24 P275	1.019	1.021	1	1.027	1	1	1.031	

• GWP-total in Installation stage = (4.153E+00 * 0.791) = 3.285E+00 kg CO2-eq

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE		
Approved	Public	PR24-TC-010	с	EN	15/19		
© Copyright 2024 ABB. All rights reserved.							

NALF 24 P235	0.867	0.843	1	0.946	1	1	1.262
NALF 24 P275	0.887	0.864	1	0.972	1	1	1.293
NALF 36 P360	1.315	1.436	-0.865	2.004	6.636	0.088	1.487
NALFO-H 12 P150	0.747	0.668	0.982	0.706	0.791	2.255	0.691
NALFO-H 12 P210	0.775	0.700	0.982	0.743	0.791	2.255	0.733
NALFO 12 P150	0.663	0.569	0.982	0.669	0.791	2.255	0.843
NALFO 12 P170	0.670	0.577	0.982	0.679	0.791	2.255	0.853
NALFO 12 P210	0.689	0.598	0.982	0.704	0.791	2.255	0.883
NALFO-H 24 P235	0.944	0.937	1	0.966	1	1	0.973
NALFO-H 24 P275	0.964	0.959	1	0.993	1	1	1.003
NALFO 24 P235	0.806	0.774	1	0.912	1	1	1.227
NALFO 24 P275	0.826	0.795	1	0.939	1	1	1.257
NALFO 36 P360	1.322	1.443	-0.865	2.022	6.636	0.088	1.508

An Excel tool for result for all NALF Family is available at:

https://search.abb.com/library/Download.aspx?DocumentID=1VCP001052&LanguageCode= en&DocumentPartId=&Action=Launch

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE		
Approved	Public	PR24-TC-010	с	EN	16/19		
© Copyright 2024 ABB. All rights reserved.							

$\operatorname{Sensitivity}_{\Pi} \operatorname{Sensitivity}_{\Pi} \operatorname{Sensitiv}_{\Pi} \operatorname{Sensitivity}_{\Pi} \operatorname{Sensitiv}_{\Pi} \operatorname{Sensitiv}$

This chapter presents the results of a sensitivity analysis in different scenarios, to understand how the impact category "GWP – total" varies for the switch-disconnectors NALF that are produced and sold in different geographical locations. The plant in Egypt focus on local markets and production includes two configurations of the NALF family, NALF-H 12 P170 and NALF-H 24 P275.

GWP-total [kg CO2-eq]								
	Total	UPSTREAM	CORE		DOWNSTREAM			
Scenario	[kg CO₂ eq.]	Manufacturing		Distribution	Installation	Use and maintenance	End-of-life	
NALF-H 12 P170 Manufacturing: Egypt Use stage: Africa	3.97E+02	2.63E+02	3.86E+01	2.95E+00	3.29E+00	8.26E+01	5.92E+00	
NALF-H 24 P275 Manufacturing: Egypt Use stage: Africa	5.31E+02	4.37E+02	3.90E+01	4.48E+00	4.15E+00	3.66E+01	9.49E+00	

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE		
Approved	Public	PR24-TC-010	с	EN	17/19		
© Copyright 2024 ABB. All rights reserved.							

Additional Environmental Information

Circularity Values

The recyclability potential of the NALF is calculated by dividing "MFR: material for recycling" in the end-of-life stage by the total weight of the product. As a result, the recyclability potential of the product is 70.07%.

Greenhouse gas emissions from the use of electricity in the manufacturing phase

Production mix from import, medium voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process.

Energy mix	Source	Amount	Unit
Polish energy mix; Electricity, medium	Ecoinvent v3.9.1	0.95	kg CO2-eq/kWh
voilage {PL}/ market group for / Cut-off, S			

Dangerous substances

The product complies with REACH requirements and does not contain any of the listed materials in excess of the authorized proportions. For further information about REACH and RoHS, please visit the ABB webpage: https://new.abb.com/contact/form.

Indoor environment

The product meets the requirements for low emissions.

Carbon footprint

Carbon footprint has not been worked out for the product.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE		
Approved	Public	PR24-TC-010	с	EN	18/19		
© Copyright 2024 ABB. All rights reserved.							

References

Jaśkiewicz K. (2024). NALF: Life Cycle Assessment Report (Report No. PR24-TC-009, rev. C). ABB
Switzerland Ltd, Group Technology Management.
ecoinvent. ecoinvent v3.9.1 (2022). https://ecoinvent.org/the-ecoinvent-database/data-
releases/ecoinvent-3-9-1/
European Committee for Standardization. (2019). Product category rules for life cycle
assessments of electronic and electrical products and systems (EN 50693:2019).
European Committee for Standardization. (2019). <i>Sustainability of constructions - Environmental</i>
Furstat (2020) Packaging waste by waste management operations
https://ec.europa.eu/eurostat/databrowser/view/ENV_WASPAC/default/table2lang-en
ICMO S n & (2023) PCR EPDItaly/007-Electronic and electrical products and systems rev 3.0
(2023-01-13) EPDItaly https://www.enditaly.it/en/view-pcr/
ICMO S n & (2020a) PCR EPDItaly012-Electronic and electrical products and systems - switches
rev 0 (2020-03-15) EPDItaly https://www.enditaly.it/en/view-pcr/
ICMO S n A (2020b) Regulations of the EPDItaly Programme Regulations rev 5.2 (2020-02-16)
EPDItaly, https://www.epditaly.it/en/wp-content/uploads/2016/12/EPDITALY-
Regulament rev-5.2 EN.pdf
International Electrotechnical Commission (2012). <i>Guidelines for end-of-life information provided</i>
by manufacturers and recyclers and for recyclability rate calculation of electrical and
electronic equipment. Edition 1.0 (2012-10-1) (IEC/TR 62635).
International Organization for Standardisation. (2006). Environmental management - Life cycle
assessment - Principles and framework (ISO Standard No. 14040:2006).
https://www.iso.org/standard/37456.html
International Organization for Standardisation. (2006). Environmental management - Life cycle
assessment - Requirements and guidelines (ISO Standard No. 14044:2006).
https://www.iso.org/standard/38498.html
PRé Sustainability. (2023). SimaPro (version 9.5) [computer software]. https://pre-
sustainability.com/solutions/tools/simapro/
SeaRates. (2022). Shipping Distances & Time Calculator.
https://www.searates.com/services/distances-time
The Norwegian EPD Foundation / EPD-Norge (2019) General Programme Instructions 2019

The Norwegian EPD Foundation/EPD-Norge. (2019). General Programme Instructions 2019, Version 3.0 (2019-04-24). https://www.epd-norge.no/getfile.php/1340010-1685100696/Dokumenter/GPI%20Det%20norske%20EPD%20programmet%20approved %20240419%20-%20ver3%20updated%20250523.pdf

	Program Operator and publisher		
🖒 epd-norge	The Norwegian EPD Foundation	Ph.	+47 23 08 80 00
The Norwegian EPD Foundation	Post Box 5250 Majorstuen,	email	post@epd-norge.no
	0303 Oslo, Norway	web	www.epd-norge.no
	Owner of the declaration		
	ABB Switzerland Ltd, Group		
	Technology Management		
	Brown Boveri Straße 6, 5400	wob	www.abb.com
	Baden, Switzerland	web	www.abb.com
	Author		
	Karolina Jaśkiewicz	Ph.	+48 728 401 724
	ABB Poland	email	karolina.jaskiewicz@pl.abb.com
	Leszno 59, 06-300 Przasnysz	web	www.abb.com
SECUR	ITY LEVEL DOCUMENT ID.		REV. LANG. PAGE

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	PR24-TC-010	с	EN	19/19
© Copyright 2024 ABB. All rights reserved.					