

EPD

Environmental Product Declaration

REX640 Protection and Control Relay

Production site: Vaasa, Finland

DOCUMENT KIND	IN COMPLIANCE WITH			
Environmental Product Declaration	ISO 14025 and EN 50693			
PROGRAM OPERATOR	PUBLISHER			
The Norwegian EPD Foundation	The Norwegian EPD Foundation			
REGISTRATION NUMBER OF THE PROGRAM OPERATOR	ISSUE DATE			
NEPD-8013-7670-EN	2024-11-14			
VALID TO	STATUS	SECURI	TY LEVEL	
2029-11-14	Approved	Public		
OWNING ORGANIZATION	ABB DOCUMENT ID	REV.	LANG.	PAGE
ABB Switzerland Ltd, Group Technology Management	2RCA057421	В	EN	1/21

EPD Owner	ABB Switzerland Ltd, Group Technology Management
Organization No.	CHE-101.538.426
Manufacturer name and address	ABB Oy Muottitie 2 A, Vaasa, Finland
Company contact	Markus Kortesluoma – markus.kortesluoma@fi.abb.com
Company contact	Product Line Manager
Program operator	The Norwegian EPD Foundation Post Box 5250 Majorstuen, 0303 Oslo, Norway phone: +47 23 08 80 00, email: post@epd-norge.no
Declared product	REX640 Protection and Control Relay
Product description	The REX640 relay is used in utility, industrial, and transport and infrastructure applications for protection, control, measurement, and super-vision of power distribution systems. The relay has a modular design for both hardware and software. The available application packages provide feeder protection, power transformer protection, machine protection, shunt capacitor protection, busbar protection, automatic synchronization, Petersen coil control, Arc protection with supervised sensors.
Functional unit	To protect a power system against faults such as short circuit and overload, using an auxiliary voltage of 110 V DC, during a service life of 10 years and with a use rate of 100 % in Europe.
Reference flow	A single REX640 protection and control relay, including related connectors and packaging.
Independent	Independent verification of the declaration and data, according to ISO 14025:2010
verification	□ INTERNAL ⊠ EXTERNAL
	Independent verifier approved by EPD-Norge: Elisabet Amat
	Signature:
Approved by	Håkon Hauan, CEO EPD-Norge
	Signature: Haken Haway
Reference PCR	EN 50693:2019 – Product Category Rules for Life Cycle Assessments of Electronic and Electrical Products and Systems. EPDItaly007 – Electronic and Electrical Products and Systems, Rev. 3.0, 2023/01/13.
Program	The Norwegian EPD Foundation/EPD-Norge, General Programme Instructions 2019,
instructions	Version 3.0, 2019/04/24.
LCA study	This EPD is based on the LCA study described in the LCA report 2RCA057422_B.
EPD type	Specific product with extrapolation rules
EPD scope	Cradle-to-grave
Product RSL	10 years
Geographical	Manufacturing (suppliers): Manufacturing (ABB): Downstream:
representativeness	Global Finland Europe
Reference year	2023
LCA software	SimaPro 9.5 (2023)
LCI database	Ecoinvent v3.9.1 (2022)
Comparability	EPDs published within the same product category, though originating from different programs, may not be comparable. Full conformance with a PCR allows EPD comparability only when all stages of a life cycle have been considered. However, variations and deviations are possible.
Liability	The owner of the declaration shall be liable for the underlying information and evidence. EPD-Norge shall not be liable with respect to manufacturer, life cycle assessment data, and evidence.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE		
Approved	Public	2RCA057421	В	EN	2/21		
© Copyright 2024 ABB. All rights reserved.							

Contents

Sustainability at ABB	4
General Information	5
Constituent Materials	8
LCA Background Information	10
Inventory Analysis	12
Environmental Indicators	14
Extrapolation rules	16
Additional Environmental Information	19
References	21

Sustainability at ABB

ABB is a leading global technology company that energizes the transformation of society and industry to achieve a more productive, sustainable future. By connecting software to its electrification, robotics, automation, and motion portfolio, ABB pushes the boundaries of technology to drive performance to new levels.

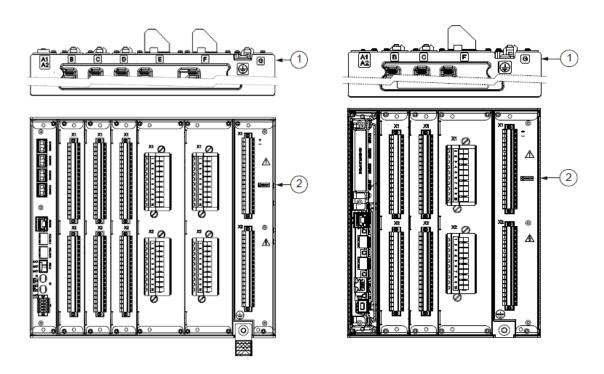
At ABB, we actively contribute to a more sustainable world, leading by example in our own operations and partnering with customers and suppliers to enable a low-carbon society, preserve resources, and promote social progress.

Learn more on our website <u>global.abb/group/en/sustainability</u> or scan the QR code.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	2RCA057421	В	EN	4/21

General Information

This Environmental Product Declaration is a "specific product EPD" with extrapolation rules. A representative product configuration is declared as reference product, and the results can be extrapolated for other configurations according to the provided extrapolation rules. The EPD covers all configurations of REX640, including related connectors and packaging.


REX640 is an all-in-one protection and control relay used in advanced power distribution and generation applications with unmatched flexibility available during the complete life cycle of the device. The relay has a modular design for both hardware and software, which allows customization and modification flexibility, and adaptation to changing protection requirements. REX640 relays are used in utility, industrial, and transport and infrastructure applications for protection, control, measurement, and super-vision of power distribution systems. REX640 is based on an application package concept, that offer a variety of readymade application packages to choose from. The available application packages provide feeder protection, power transformer protection, machine protection, shunt capacitor protection, busbar protection, automatic synchronization, Petersen coil control, and Arc protection with supervised sensors throughout the relay life cycle.

REX640 offers two different relay size variants, standard housing and narrow housing, which are fully modular in terms of both hardware and software. The relay size variant and module content can be selected according to application needs. The relay has mandatory and optional slots. A mandatory slot always contains a module, but an optional slot may be empty, depending on the composition variant ordered. The REX640 module slots and size variants (top and bottom) are illustrated below.

0.0 11.000445541114					
Approved	Public	2RCA057421	В	EN	5/21
STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE

			Standa	rd case				
Slot A1	Slot A2	Slot B	Slot C	Slot D	Slot E	Slot F	Slot G	
Narrow case								
Slot A1	Slot A2	Slot B	Slot C			Slot F	Slot G	
0								
	•							
	•							
	•							
	•							
	•							
		•	0	0				
		•	0	o				
					0			
					0			
			0	0				
			0	o				
					0	•		
					0	•		
					0	•		
					0	•		
							•	
							•	
							•	
	Slot A1	Slot A1 Slot A2	Slot A1 Slot A2 Slot B	Slot A1 Slot A2 Slot B Slot C	Narrow case Slot A1	Slot A1	Slot A1	

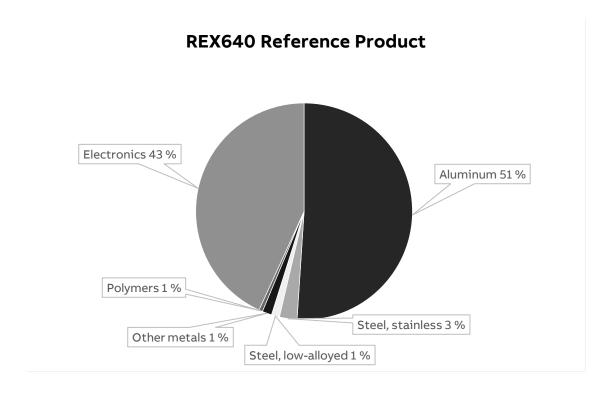
- = Mandatory to have one of the allocated modules in the slot
- o = Optional to have one of the allocated modules in the slot.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	2RCA057421	В	EN	6/21
e Constitutional App All Salar and					

General technical specifications of the REX640 reference product configuration are presented below.

	Description	REX640_11Z9 (Reference Product)		
	Base functionality	REX640B10NN		
	A1	-		
	A2	COM1002		
	В	BIO1001		
Config.	С	BIO1001		
comig.	D	BIO1001		
	E	AIM1001		
	F	AIM1002		
	G	PSM1902		
	Housing	Standard		
	Width	304.0 mm		
	Height	264.8 mm		
	Depth with compression CT/VT connectors	242.2 mm		
Size	Depth with ring lug CT/VG connectors	254.1mm		
	Depth with grounding bar	274.0 mm		
	Weight	9.15 kg		
	Nominal auxiliary	100, 110, 120, 220, 240 V AC, 50 and 60 Hz		
	voltage U _n	48, 60, 110, 125, 220, 250 V DC		
Ratings	Burden of auxiliary	DC < 20.0 W (nominal) / < 25.0 W (max.)		
	voltage supply P _q	AC < 20.0 W (nominal) / < 25.0 W (max.)		
	Measured nominal power @ 110 V DC	16.5 W		

The REX640 is manufactured by ABB located in Vaasa, Finland. The manufacturing site uses 100 % renewable energy for the electricity (50/50 wind and hydro) and for heating (bioenergy), and is certified according to the following standards:


- ISO 9001:2015 Quality Management Systems
- ISO 14001:2015 Environmental Management Systems
- ISO 45001:2018 Occupational Health and Safety Management Systems
- ISO 50001:2018 Energy management systems
- ISO 27001:2022 Information security management system

Constituent Materials

The constituent materials of the REX640 Reference Product are presented below.

Type	Material	Weight [kg]	Weight %
	Aluminum	4.67	51
Metals	Steel, stainless steel	0.24	3
Metais	Steel, low-alloyed	0.11	1
	Other metals	0.13	1
Plastics	Polyamide	0.03	0
Plastics	Other polymers	0.02	0
Others	Electronics	3.95	43
Total		9.15	100

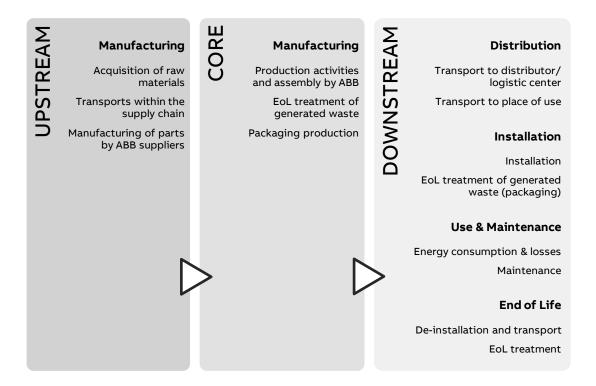
STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	2RCA057421	В	EN	8/21
@ Commission 2024 ADD All visions are and					

The constituent materials of the packaging are presented below. Both primary packaging (unit) and secondary packaging (bulk) are considered, and 6 pcs are assumed per pallet.

	Description	Material	Weight [kg]	Weight %
	Packaging box	Cardboard	0.471	13
	Cushioning	Molded fiber pulp	0.384	10
Unit (1 st)	Protective cover	PET	0.020	1
(-)	Documentation	Printed paper	0.043	1
	Subtotal		0.918	25
	Pallet	Wood	1.767	48
	Container cover	Cardboard	0.183	5
	Container bottom	Cardboard	0.417	11
Bulk (2 nd)	Protective edges	Cardboard	0.018	<1
• •	Cushioning	Kraft paper	0.350	10
	Plastic straps	PET	0.011	<1
	Subtotal		2.746	75
	Total**		3.664	100

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE	
Approved	Public	2RCA057421	В	EN	9/21	
e Contributed and All States and						

LCA Background Information


Functional Unit

The functional unit of this study is to protect a power system against faults such as short circuit and overload, using an auxiliary voltage of 110 V DC, during a service life of 10 years and with a use rate of 100 % in Europe. The reference flow is a single REX640 protection and control relay, including related connectors and packaging.

Note, the reference service life (RSL) of 10 years is a theoretical period selected for calculation purposes only - this is not representative for the minimum, average, nor actual service life of the product.

System Boundaries

The life cycle assessment is a "cradle-to-grave" analysis, and the system boundaries are defined according to EN 50693, as required by the PCR. For transparency reasons, the manufacturing stage is further divided into an upstream and core stage.

Data quality

Both primary and secondary data are used. The main sources for primary data are the bill of materials (BOM), CAD-files, technical drawings, and site-specific foreground data provided by ABB. Secondary raw material contents are also considered, which is provided by the suppliers for the main materials.

For all processes for which primary data are not available, generic background data originating from the ecoinvent v3.9.1 database, with system model "allocation, cut-off by classification", are used. The LCA software used for the calculations is SimaPro 9.5.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE		
Approved	Public	2RCA057421	В	EN	10/21		
© Copyright 2024 ABB. All rights reserved.							

Allocation rules

The utility consumption and waste generation by ABB, in the core manufacturing stage, is allocated to the production of one reference product according to applicable rules. For the end-of-life allocation, the "Polluter Pays" principle is adopted according to what is defined in the CEN/TR 16970 standard. However, the potential benefits and avoided loads from recovery and recycling processes are not considered because it is not required by the PCR.

Cut-off criteria

The PCR EPDItaly007 does not provide any details about cut-off criteria; it refers to chapter 4.2.3.3 in the standard EN 50693. According to EN 50693, the cut-off criteria can be set to a maximum of 5 % of the overall environmental impacts. In this LCA, labels as well as the tape and staples used in the packaging have been excluded as their weights are negligible.

Approved	Public	2RCA057421	В	EN	11/21
STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE

Inventory Analysis

Manufacturing Stage (upstream)

The life cycle inventory in the upstream manufacturing stage is based on the primary data available from ABB and background data from ecoinvent. Datasets are applied accordingly, to the best of our knowledge, to represent each material, manufacturing process, and surface treatment. Modelling decisions and assumptions that are highly relevant to the results are as following:

- Secondary raw materials content is considered when selecting datasets.
- Printed wiring boards are modelled on a component level, i.e., each component is considered and mapped with the most representative dataset available.
- The amount of gold used in each connector is considered, due to its high impact.

Additionally, supply chain transports are added as far as data is available between ABB, the suppliers, and sub-suppliers. Only primary suppliers are considered. The rest of the transports are assumed to already be included in ecoinvent's "market for"-processes.

Manufacturing Stage (core)

In the core manufacturing stage, utility consumption and waste generation at the ABB manufacturing site are accounted for. The packaging materials are also considered. Modelling decisions and assumptions that are highly relevant to the results are as following:

• 100% renewable electricity and district heating is considered, which is procured by the ABB manufacturing site through Guarantees of Origins (GO's). In the use stage electricity is not calculated according to residual mix, but according to location-based approach.

Distribution

The transport distance from the ABB manufacturing site to the site of installation is assumed to be 300 km by lorry, as the actual distance is unknown. The environmental impacts can be multiplied accordingly if the actual distance is known.

	Dataset	Amount	Unit	Represent.
Transport	Transport, freight, lorry 16-32 metric ton, EURO4 {RER}	300	km	Assumption

Installation

The installation phase only implies manual activities, and the energy consumed is negligible. Therefore, this phase only considers the end-of-life of the packaging materials used.

	Scenario	Transport	Representation
Packaging End-of-Life	Packaging waste by waste management operations (Eurostat, 2021)	100 km by lorry (assumption)	Europe

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE	
Approved	Public	2RCA057421	В	EN	12/21	
a Constitutional ADD All States and						

Use

The use stage considers the measured nominal power consumption at 110 V DC over the reference service life of 10 years over the reference service life as defined in the functional unit. This is calculated using the following formula:

$$E_{use}[kWh] = \frac{P_{use} * 8760 * RSL * \alpha}{1000} = \frac{16.5 \text{ W} * 8760 \text{ hours} * 10 \text{ years} * 100 \%}{1000} = 1445.5 \text{ kWh}$$

Where:

- *E*_{use} = Total energy use over the reference service life
- *P_{use}* = Reference power consumption in watts
- RSL = Reference Service Life in years
- α = Use time rate
- 8760 is the number of hours in a year
- 1000 is the conversion factor from W to kW

The energy mix of the European Union is adopted to represent an average European downstream scenario.

		Datase	et .		Amount	Unit	Represent.
Energy	Electricity, market gro		_	{RER}/	0.36	kg CO₂- eq./kWh	Europe

Maintenance is not considered because the REX640 does not have any required, planned, or preventive maintenance within its service life. Possible corrective maintenance is unusual, and thus considered negligible.

End of life

Decommissioning of the product only implies manual activities, and the energy consumed is negligible. Therefore, this phase only considers the end-of-life of the product.

	Scenario	Transport	Representation
Product End-of-Life	IEC/TR 62635 (Annex D.3)*	100 km by lorry (assumption)	Europe

^{*}A conservative approach is adopted by considering all parts as either: requiring selective treatment, difficult to process, or going through a separation process; no individual part is considered as a single recyclable material.

Environmental Indicators

In accordance with the PCR EPDItaly007, the environmental impact indicators are determined by using the characterization factors and impact assessment methods specified in EN 15804:2012+A2:2019.

REX640 Reference Product

			Cradle-	to-gate				
					Cradle-t	o-grave		
Impact	Unit	Total	UPSTREAM	CORE		DOWNSTREAM		
category	Onit	Iotai	Manufa	cturing	Distribution	Installation	Use and maintenance	End-of-life
GWP – total	kg CO₂ eq.	7,54E+02	2,22E+02	1,11E+00	7,20E-01	1,53E+00	5,23E+02	6,18E+00
GWP – fossil	kg CO₂ eq.	7,35E+02	2,22E+02	3,19E+00	7,19E-01	1,33E-01	5,03E+02	6,02E+00
GWP – biogenic	kg CO₂ eq.	1,70E+01	-9,13E-01	-2,16E+00	6,54E-04	1,39E+00	1,86E+01	1,57E-01
GWP – luluc	kg CO₂ eq.	1,79E+00	4,50E-01	7,82E-02	3,51E-04	5,13E-05	1,26E+00	1,19E-03
ODP	kg CFC-11 eq.	2,29E-05	1,33E-05	5,85E-07	1,57E-08	2,15E-09	9,03E-06	1,24E-08
АР	mol H+ eq.	4,70E+00	2,15E+00	1,97E-02	2,97E-03	5,31E-04	2,52E+00	5,73E-03
EP – freshwater	kg P eq.	7,38E-01	2,77E-01	1,91E-03	5,06E-05	1,25E-05	4,59E-01	3,24E-04
EP – marine	kg N eq.	7,99E-01	3,38E-01	7,41E-03	1,14E-03	7,68E-04	4,49E-01	2,17E-03
EP – terrestrial	mol N eq.	7,72E+00	3,67E+00	6,30E-02	1,21E-02	2,19E-03	3,96E+00	1,89E-02
РОСР	kg NMVOC eq.	2,39E+00	1,08E+00	1,81E-02	4,36E-03	8,06E-04	1,28E+00	5,23E-03
ADP – minerals and metals	kg Sb eq.	7,52E-02	7,41E-02	4,95E-05	2,32E-06	2,92E-07	1,00E-03	7,38E-06
ADP – fossil	MJ, net calorific value	1,44E+04	2,79E+03	4,51E+01	1,03E+01	1,37E+00	1,16E+04	1,13E+01
WDP	m³ eq.	1,75E+02	5,53E+01	1,19E+00	4,16E-02	1,23E-02	1,18E+02	2,10E-01

GWP-fossil: Global Warming Potential fossil; GWP-biogenic: Global Warming Potential biogenic; GWP-luluc: Global Warming Potential land use and land use change; ODP: Depletion potential of the stratospheric ozone layer; AP: Acidification potential; EP-freshwater: Eutrophication potential-freshwater compartment; EP-marine: Eutrophication potential-marine compartment; EP-terrestrial: Eutrophication potential-accumulated exceedance; POCP: Formation potential of tropospheric ozone; ADP-minerals & metals: Abiotic Depletion for non-fossil resources potential; ADP-fossil: Abiotic Depletion for fossil resources potential; WDP: Water deprivation potential.

Approved	Public	2RCA057421	В	EN	14/21
STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE

			Cradle-	to-gate				
					Cradle-t	o-grave		
Resource use	Unit	Total	UPSTREAM	CORE		DOWNS	STREAM	
parameters	Oilit	Iotai	Manufacturing		Distribution	Installation	Use and maintenance	End-of-life
PENRE	MJ, low cal. value	1,44E+04	2,74E+03	4,44E+01	1,03E+01	1,37E+00	1,16E+04	1,13E+01
PERE	MJ, low cal. value	2,62E+03	3,23E+02	7,69E+01	1,59E-01	2,75E-02	2,22E+03	1,10E+00
PENRM	MJ, low cal. value	6,30E+01	6,23E+01	7,40E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00
PERM	MJ, low cal. value	7,49E+01	2,66E+01	4,83E+01	0,00E+00	0,00E+00	0,00E+00	0,00E+00
PENRT	MJ, low cal. value	1,44E+04	2,80E+03	4,51E+01	1,03E+01	1,37E+00	1,16E+04	1,13E+01
PERT	MJ, low cal. value	2,70E+03	3,49E+02	1,25E+02	1,59E-01	2,75E-02	2,22E+03	1,10E+00
FW	m³	1,12E+01	2,07E+00	7,71E-02	1,46E-03	4,36E-04	9,05E+00	7,54E-03
MS	kg	3,94E+00	3,18E+00	7,63E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00
RSF	МЈ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
NRSF	МЭ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00

PENRE: Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw material; PERE: Use of renewable primary energy excluding renewable primary energy resources used as raw material; PENRM: Use of nonrenewable primary energy resources used as raw material; PERM: Use of renewable primary energy resources used as raw material; PENRT: Total use of non-renewable primary energy resources (primary energy and primary energy resources used as raw materials); FW: Net use of fresh water; MS: Use of secondary materials; RFS: Use of renewable secondary fuels; NRSF: Use of non-renewable secondary fuels.

			Cradle-	to-gate				
					Cradle-t	o-grave		
System output	Unit		UPSTREAM	CORE	DOWNSTREAM			
indicators	Onic	Total	Manufacturing		Distribution	Installation	Use and maintenance	End-of-life
HWD	kg	5,49E-02	3,99E-02	2,63E-04	6,53E-05	8,09E-06	1,47E-02	4,75E-05
NHWD	kg	6,77E+01	3,09E+01	1,09E+00	5,01E-01	8,99E-01	3,17E+01	2,57E+00
RWD	kg	9,00E-02	5,64E-03	9,78E-05	3,33E-06	5,26E-07	8,42E-02	1,99E-05
MER	kg	3,26E+00	2,19E-04	8,50E-01	0,00E+00	7,08E-01	0,00E+00	1,70E+00
MFR	kg	1,05E+01	1,23E+00	1,88E+00	0,00E+00	2,11E+00	0,00E+00	5,32E+00
CRU	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
ETE	МЈ	1,06E+01	1,68E-03	2,91E+00	0,00E+00	2,93E+00	0,00E+00	4,72E+00
EEE	МЈ	5,78E+00	8,58E-04	1,53E+00	0,00E+00	1,63E+00	0,00E+00	2,63E+00

HWD: hazardous waste disposed; NHWD: non-hazardous waste disposed; RWD: radioactive waste disposed; MER: materials for energy recovery; MFR: material for recycling; CRU: components for reuse; ETE: exported thermal energy; EEE: exported electricity energy.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE		
Approved	Public	2RCA057421	В	EN	15/21		
© Copyright 2024 ARR All rights recorded							

Due to the large variations in environmental impacts between product configurations, extrapolation rules are established according to EN 50693. This allows for estimating more precise impacts of other relay configurations. The extrapolation rules are based on multilinear regression from the LCIA results of 4 product configurations. Also, the extrapolation rules have been tested with various REX640 configurations to ensure an accuracy of the total environmental impacts. As a result, the following rules are established:

• The upstream manufacturing stage, core stage, distribution stage, use and maintenance stage, and end-of-life stage can be extrapolated, based on the number of hardware slots and housing type, using the following formula:

$$Impact = Impact_{ref} * (1 - a * (7 - n_{slots}) + b * x_{type} + c * y_{type})$$

where

- Impact is the extrapolated value for any impact category
- *Impact_{ref}* is the impact value of the reference product
- n_{slots} is the number of used module slots
- x_{type} is 0 if standard hausing and 1 if narrow housing
- y_{type} is 0 if no ARC module included 1 if ARC module included
- a, b and c are calculated coefficients, that are presented in the three tables below
- The use stage is proportional to the actual, measured power consumption and can be extrapolated using the following formula:

$$Impact = Impact_{ref} * (\frac{P_{actual}}{16.5 \text{ W}})$$

where

- Impact is the extrapolated value for any impact category
- *Impact_{ref}* is the impact value of the reference product
- P_{actual} is the actual, measured power consumption
- Typical range: 12 20 W

Example 1: A REX640 relay with standard housing that have 6 hardware module slots in use, no ARC module is included, and a measured power consumption at 16.0 W.

- "GWP-total" in upstream = 222 kg CO2-eq * (1 0.09 * (7–6) + 0.04 * 0 + 0.07 * 0) = 202 kg CO2-eq
- "GWP-total" in use stage = 523 kg CO2-eq * (16.0 W / 16.5 W) = 507 kg CO2-eq

Example 2: REX640 relay with narrow housing that have 6 hardware modules in use, ARC module is included, and a measured power consumption at 17.0 W.

- "ADP-fossil" in distribution = 2793 MJ * (1 0.1 * (7 6) + 0.04 * 1 + 0.07 * 1) = 2215 MJ
- "ADP-fossil" in use stage = 11574 MJ * (17.0 W / 16.5 W) = 11925 MJ

An Excel tool for the extrapolation rules of REX640 is available at:

https://search.abb.com/library/Download.aspx?DocumentID=2RCA057534&LanguageCode=en&DocumentPartId=&Action=Launch

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE	
Approved	Public	2RCA057421	В	EN	16/21	
a Constitutional ADD All States and						

Impact		Upstream	1	Core	D	istributio	n	Installation	E	nd-of-lif	e
category	a	b	С	a, b, c	a	b	С	a, b, c	a	b	С
GWP – total	0.09	-0.04	-0.07	-	0.05	-0.08	-0.05	-	0.15	-0.04	-0.13
GWP – fossil	0.09	-0.04	-0.07	-	0.05	-0.08	-0.05	-	0.16	-0.03	-0.13
GWP – biogenic	-0.06	0.17	0.04	-	0.05	-0.08	-0.05	-	-0.00	-0.18	-0.00
GWP – luluc	0.08	-0.03	-0.06	-	0.05	-0.08	-0.05	-	0.07	-0.12	-0.06
ODP	0.05	-0.02	-0.03	-	0.05	-0.08	-0.05	-	0.09	-0.10	-0.08
АР	0.11	-0.02	-0.09	-	0.05	-0.08	-0.05	-	0.09	-0.09	-0.08
EP – freshwater	0.10	-0.03	-0.08	-	0.05	-0.08	-0.05	-	0.08	-0.11	-0.07
EP – marine	0.10	-0.02	-0.08	-	0.05	-0.08	-0.05	-	0.11	-0.08	-0.09
EP – terrestrial	0.10	-0.02	-0.08	-	0.05	-0.08	-0.05	-	0.11	-0.08	-0.09
POCP	0.10	-0.03	-0.08	-	0.05	-0.08	-0.05	-	0.10	-0.09	-0.09
ADP – minerals and metals	0.10	-0.03	-0.09	-	0.05	-0.08	-0.05	-	0.06	-0.12	-0.06
ADP – fossil	0.10	-0.04	-0.07	-	0.05	-0.08	-0.05	-	0.08	-0.11	-0.07
WDP	0.13	-0.04	-0.11	-	0.05	-0.08	-0.05	-	0.11	-0.08	-0.10

GWP-fossil: Global Warming Potential fossil; GWP-biogenic: Global Warming Potential biogenic; GWP-luluc: Global Warming Potential land use and land use change; ODP: Depletion potential of the stratospheric ozone layer; AP: Acidification potential; EP-freshwater: Eutrophication potential-freshwater compartment; EP-marine: Eutrophication potential-marine compartment; EP-terrestrial: Eutrophication potential-accumulated exceedance; POCP: Formation potential of tropospheric ozone; ADP-minerals & metals: Abiotic Depletion for non-fossil resources potential; ADP-fossil: Abiotic Depletion for fossil resources potential; WDP: Water deprivation potential.

Resource use	ı	Jpstrean	n	Core	Di	istributio	on	Installation	E	nd-of-lif	e
parameters	a	b	С	a, b, c	a	b	С	a, b, c	a	b	С
PENRE	0,10	-0,04	-0,07	-	0.05	-0.08	-0.05	-	0.08	-0.11	-0.07
PERE	0,10	-0,03	-0,07	-	0.05	-0.08	-0.05	-	0.07	-0.11	-0.07
PENRM	0,17	-0,01	-0,16	-	-	-	-	-	-		-
PERM	-	-	-	-	-	-	-	-	-		-
PENRT	0.10	-0.04	-0.07	-	0.05	-0.08	-0.05	-	0.08	-0.11	-0.07
PERT	0.09	-0.03	-0.06	-	0.05	-0.08	-0.05	-	0.07	-0.11	-0.07
FW	0.11	-0.04	-0.09	-	0.05	-0.08	-0.05	-	0.11	-0.08	-0.09
MS	-	-0.26	-	-	-	-	-	-	-	-	-

PENRE: Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw material; PERE: Use of renewable primary energy excluding renewable primary energy resources used as raw material; PENRM: Use of non-renewable primary energy resources used as raw material; PERM: Use of renewable primary energy resources used as raw material; PENRT: Total use of non-renewable primary energy resources (primary energy and primary energy resources used as raw materials); PERT: Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials); FW: Net use of fresh water; MS: Use of secondary materials; RFS: Use of renewable secondary fuels; NRSF: Use of non-renewable secondary fuels.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE		
Approved	Public	2RCA057421	В	EN	17/21		
© Copyright 2024 ABB All rights recogned							

Waste	ı	Jpstrean	n	Core	D	istributio	on	Installation	E	nd-of-lif	e
production indicators	a	b	С	a, b, c	a	b	С	a, b, c	a	b	С
HWD	0.08	-0.11	-0.07	-	0.05	-0.08	-0.05	-	0.09	-0.10	-0.07
NHWD	0.09	-0.07	-0.07	-	0.05	-0.08	-0.05	-	0.13	-0.06	-0.11
RWD	0.10	-0.05	-0.07	-	0.05	-0.08	-0.05	-	0.06	-0.12	-0.06
MER		-	-	-	-	-	-	-	0.17	-0.02	-0.15
MFR	0.00	-0.17	-0.01	-	-	-	-	-	0.02	-0.16	-0.02
CRU	-	-	-	-	-	-	-	-	-	-	-
ETE	-	-	-	-	-	-	-	-	0.17	-0.02	-0.15
EEE	-	-	-	-	-	-	-	-	0.17	-0.02	-0.15

HWD: hazardous waste disposed; NHWD: non-hazardous waste disposed; RWD: radioactive waste disposed; MER: materials for energy recovery; MFR: material for recycling; CRU: components for reuse; ETE: exported thermal energy; EEE: exported electricity energy.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE	
Approved	Public	2RCA057421	В	EN	18/21	
e Constitutional ARR All Tables and all						

Additional Environmental Information

Circularity Values

The recycled content and recyclability potential of the product (excluding packaging) is calculated by dividing "MS: Use of secondary materials" in the upstream manufacturing stage and "MFR: material for recycling" in the end-of-life stage by the total weight of the product. This has been done for the four configurations used for the extrapolation rules. The recycled content is based on primary data, and the recyclability potential is representative for Europe according to IEC/TR 62635. The results are presented below.

	Recycled content	Recyclability potential
Configuration 1 (reference product) Housing: Standard Slots: 7/8	35 %	58 %
Configuration 2 Housing: Standard Slots: 4/8	45 %	70 %
Configuration 3 Housing: Standard Slots: 8/8	34 %	58 %
Configuration 4 Housing: Narrow Slots: 4/6	39 %	68 %

The recycled content and recyclability potential of the packaging is calculated by dividing "MS: Use of secondary materials" in the core manufacturing stage and "MFR: material for recycling" in the installation stage by the total weight of the packaging. The recycled content is based on primary data, and the recyclability potential is representative for Europe according to Eurostat (2021). The results are presented below.

	Recycled content	Recyclability potential
Packaging materials	21 %	58 %

Greenhouse gas emissions from the use of electricity in the manufacturing phase

Production mix from import, medium voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process.

Energy mix	Source	Amount	Unit
ABB FI custom energy mix; 50 % wind + 50 % hydro	Ecoinvent v3.9.1	0.028	kg CO ₂ -eq/kWh

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE		
Approved	Public	2RCA057421	В	EN	19/21		
© Conviget 2024 ARR All rights received							

Dangerous substances

The product complies with REACH and RoHS directive requirements and does not contain any of the listed materials in excess of the authorized proportions. For further information about REACH and RoHS, please visit the ABB webpage:

https://new.abb.com/contact/form.

Indoor environment

The product meets the requirements for low emissions.

Carbon footprint

Carbon footprint has not been worked out for the product.

Approved	Public	2RCA057421	В	EN	20/21
STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE

References

ecoinvent. ecoinvent v3.9.1 (2022). https://ecoinvent.org/the-ecoinvent-database/data-releases/ecoinvent-3-9-1/

European Committee for Standardization. (2019). *Product category rules for life cycle assessments of electronic and electrical products and systems* (EN 50693:2019).

European Committee for Standardization. (2019). Sustainability of constructions - Environmental product declarations (EN 15804:2012+A2:2019).

Eurostat. (2021). Packaging waste by waste management operations.

https://ec.europa.eu/eurostat/databrowser/view/ENV_WASPAC/default/table?lang=en

ICMQ S.p.A. (2023). PCR EPDItaly007-Electronic and electrical products and systems, rev. 3.0 (2023-01-13). EPDItaly. https://www.epditaly.it/en/view-pcr/

ICMQ S.p.A (2020b). Regulations of the EPDItaly Programme Regulations, rev. 5.2 (2020-02-16). EPDItaly. https://www.epditaly.it/en/wp-content/uploads/2016/12/EPDITALY-Regulament_rev-5.2_EN.pdf

International Electrotechnical Commission. (2012). *Guidelines for end-of-life information provided by manufacturers and recyclers and for recyclability rate calculation of electrical and electronic equipment,* Edition 1.0 (2012-10-1) (IEC/TR 62635).

International Organization for Standardisation. (2006). Environmental management - Life cycle assessment - Principles and framework (ISO Standard No. 14040:2006). https://www.iso.org/standard/37456.html

International Organization for Standardisation. (2006). Environmental management - Life cycle assessment - Requirements and guidelines (ISO Standard No. 14044:2006). https://www.iso.org/standard/38498.html

Kurki, M. (2024). Life Cycle Assessment Report: REX640 Protection and Control Relay (Report No. 2RCA0575422, rev. B). ABB Switzerland Ltd, Group Technology Management.

PRé Sustainability. (2023). SimaPro (version 9.5) [computer software]. https://pre-

sustainability.com/solutions/tools/simapro/

SeaRates. (2022). Shipping Distances & Time Calculator. https://www.searates.com/services/distances-time

The Norwegian EPD Foundation/EPD-Norge. (2019). General Programme Instructions 2019, Version 3.0 (2019-04-24).

https://www.epd-norge.no/getfile.php/1340010-

1685100696/Dokumenter/GPI%20Det%20norske%20EPD%20programmet%20approved%20240419%20-%20ver3%20updated%20250523.pdf

Program Operator and publisher

The Norwegian EPD Foundation Ph. +47 23 08 80 00
Post Box 5250 Majorstuen, email post@epd-norge.no
0303 Oslo, Norway web www.epd-norge.no

Owner of the declaration

ABB Swizerland Ltd, Group Technology Management Brown Boveri Straße 6, 5400 Baden, Switzerland

web www.abb.com

Author		
Martina Kurki	Ph.	+358 50 3341214
ABB Oy	email	martina.kurki@fi.abb.com
Muottitie 2 A, Vaasa, Finland	web	www.abb.com

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	2RCA057421	В	EN	21/21