

EPD

Environmental Product Declaration

Enviline™ ESS 3000 - Energy Storage System

Production site: Bielsko-Biała, Poland

DOCUMENT KIND	IN COMPLIANCE WITH			
Environmental Product Declaration	ISO 14025 and EN 50693			
PROGRAM OPERATOR	PUBLISHER			
The Norwegian EPD Foundation	The Norwegian EPD Foundation			
REGISTRATION NUMBER OF THE PROGRAM OPERATOR	ISSUE DATE			
NEPD-8024-7702-EN	2024-11-14			
VALID TO	STATUS	STATUS SECURITY LEVEL		
2029-11-14	Approved Public			
OWNING ORGANIZATION	ABB DOCUMENT ID	REV.	LANG.	PAGE
ABB Switzerland Ltd, Group Technology Management	2UFB104261 A EN 1/17			
© Copyright 2024 ABB. All rights reserved.				

EPD Owner	ABB Switzerland Ltd, Group Technology Management
Organization No.	CHE-101.538.426
Manufacturer name and address	ABB Sp. z o.o. Switchgear and Energy Distribution Systems Factory Rudawka 96, 43-300 Bielsko-Biała, Poland
Company contact	Seila Rodriguez-Vilches – seila.rodriguez-vilches@ch.abb.com Sustainability Product Manager
Program operator	The Norwegian EPD Foundation Post Box 5250 Majorstuen, 0303 Oslo, Norway phone: +47 23 08 80 00, email: post@epd-norge.no
Declared product	Enviline™ ESS 3000 – Energy Storage System
Product description	The Enviline [™] ESS 3000 is a wayside energy management system that stores and recycles the surplus braking energy. Dependently on operation mode it shall contribute to energy savings, a more stable operating traction power system and a reduction of a peak power demand from the utility.
Functional unit	To capture the excess wayside braking energy of rolling stock, at nominal voltage of DC 3000V and use rate according to load profile class III of IEC 60146-1-1 standard during a service life of 20 year in Europe.
Reference flow	A single Enviline™ ESS 3000 device (1CCU + 1CU + 1SU), including related accessories and packaging.
Independent verification	Independent verification of the declaration and data, according to ISO 14025:2010
	🗆 INTERNAL 🛛 EXTERNAL

Independent verifier approved by EPD-Norge: Elisabet Amat

Signature:

Approved by	Håkon Hauan, CEO EPD-Norge				
	Signature: Hakon Haurons				
Reference PCR	EN 50693:2019 – Product Category Rules for Life Cycle Assessments of Electronic and Electrical Products and Systems. EPDItaly007 – Electronic and Electrical Products and Systems, Rev. 3.0, 2023/01/13. EPDItaly015 – Electronic and Electrical Products and Systems – Switchboards, Rev. 1.5, 2022/02/23.				
Program instructions	The Norwegian EPD Foundation/EPD-Norge, General Programme Instructions 2019, Version 3.0, 2019/04/24.				
LCA study	This EPD is based on the LCA study described in the LCA report 2UFB104260.				
EPD type	Specific product with extrapolation rules				
EPD scope	Cradle-to-grave				
Product RSL	20 years				
Geographical representativeness	Manufacturing (suppliers): Manufacturing (ABB): Downstream: Global Poland Europe				
Reference year	2023				
LCA software	SimaPro 9.5 (2023)				
LCI database	Ecoinvent v3.9.1 (2022)				
Comparability	EPDs published within the same product category, though originating from different programs, may not be comparable. Full conformance with a PCR allows EPD comparability only when all stages of a life cycle have been considered. However, variations and deviations are possible.				
Liability	The owner of the declaration shall be liable for the underlying information and evidence. EPD-Norge shall not be liable with respect to manufacturer, life cycle assessment data, and evidence.				

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	2UFB104261	A	EN	2/17
© Copyright 2024 ABB. All rights reserved.					

Contents

Sustainability at ABB	
General Information	5
Constituent Materials	6
LCA Background Information	
Inventory Analysis	10
Environmental Indicators	12
Extrapolation rules	
Sensitivity analysis	15
Additional Environmental Information	16
References	

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	2UFB104261	А	EN	3/17
© Copyright 2024 ABB. All rights reserved.					

ABB is a leading global technology company that energizes the transformation of society and industry to achieve a more productive, sustainable future. By connecting software to its electrification, robotics, automation, and motion portfolio, ABB pushes the boundaries of technology to drive performance to new levels.

At ABB, we actively contribute to a more sustainable world, leading by example in our own operations and partnering with customers and suppliers to enable a low-carbon society, preserve resources, and promote social progress.

Learn more on our website <u>global.abb/group/en/sustainability</u> or scan the QR code.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	2UFB104261	А	EN	4/17
© Copyright 2024 ABB. All rights reserved.					

This Environmental Product Declaration is a "specific product EPD" with extrapolation rules. A representative product configuration is declared as reference product, and the results can be extrapolated for other configurations according to the provided extrapolation rules. The EPD covers the following device of the Enviline[™] ESS 3000 Energy Storage System, including related accessories and packaging.

When trains brake, their kinetic energy is converted into electricity and returned on the traction power line. Most of the time, on-board loads and distant trains can only take a portion of this energy, and the surplus is wasted into resistors. Trains also draw excessive peaks of power during their acceleration. This causes voltage drops which can lead to performance problems and results in large demand charges and peak power penalties from the utility company. The Enviline™ ESS captures this braking energy and returns it seconds later to sustain the acceleration and is an ideal solution for demand charge reduction and voltage support.

	Description	ESS 3000
	Nominal voltage	3000 V
	Rated system voltage	3600 V
Pating	Rated system power up to	2.1 MW
Rating	Rated system current up to	580 A
	Rated energy up to	33.8 kWh
	Duty cycle class	I-X
	Width	3.4 m
Size	Height	2.3 m
	Depth	1.6 m
	Weight	5010 kg

General technical information of the reference product are presented below.

The product is manufactured by ABB Sp. z o.o. located in Bielsko-Biała.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	2UFB104261	А	EN	5/17
© Copyright 2024 ABB. All rights reserved.					

Constituent Materials

The constituent materials of Enviline[™] ESS 3000 the reference product are presented below.

Туре	Material	Weight [kg]	Weight %
	Steel	2751.84	54.88
Motola	Aluminum	287.39	5.73
Metals	Copper	194.22	3.87
	Other non-ferro	16.88	0.34
Plastics	Epoxy glass	148.37	2.96
	Polyester resin	43.28	0.86
	Polycarbonate	29.52	0.59
	Other plastics	26.88	0.54
	Polyamide	14.71	0.29
Others	Electronics	1324.22	26.41
	Cables	176.98	3.53
Total		5014.29	100

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	2UFB104261	А	EN	6/17
© Copyright 2024 ABB. All rights reserved.					

The constituent materials of the packaging and accessories are presented below.

Description	Material	Weight [kg]	Weight %
Protective film	PE	5.00	1.9
Pallet	Wood	254.15	98.1
Total		259.15	100

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE		
Approved	Public	2UFB104261	А	EN	7/17		
© Copyright 2024 ABB. All rights reserved.							

LCA Background Information

Functional Unit

The functional unit of this study is to capture the excess wayside braking energy of rolling stock, at nominal voltage of DC 3000V and use rate according to load profile class III of IEC 60146-1-1 standard during a service life of 20 years in Europe. The reference flow is a single Enviline[™] ESS 3000 device (1CCU (Control & Connection Unit) + 1CU (Converter Unit) + 1SU (Storage Unit)), including related accessories and packaging.

Note, the reference service life (RSL) of 20 years is a theoretical period selected for calculation purposes only – this is not representative for the minimum, average, nor actual service life of the product.

System Boundaries

The life cycle assessment is a "cradle-to-grave" analysis, and the system boundaries are defined according to EN 50693, as required by the PCR. For transparency reasons, the manufacturing stage is further divided into an upstream and core stage.

Data quality

Both primary and secondary data are used. The main sources for primary data are the bill of materials (BOM), CAD-files, technical drawings, and site-specific foreground data provided by ABB.

For all processes for which primary data are not available, generic background data originating from the ecoinvent v3.9.1 database, with system model "allocation, cut-off by classification", are used. The database Industry Data 2.0 is also used for material

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE			
Approved	Public	2UFB104261	А	EN	8/17			
© Copyright 2024 ABB. All rights reserved.								

Polyoxymethylene which is not available by ecoinvent. The LCA software used for the calculations is SimaPro 9.5.

Allocation rules

The utility consumption and waste generation by ABB, in the core manufacturing stage, is allocated to the production of one reference product according to applicable rules. For the end-of-life allocation, the "Polluter Pays" principle is adopted according to what is defined in the CEN/TR 16970 standard. However, the potential benefits and avoided loads from recovery and recycling processes are not considered because it is not required by the PCR.

Cut-off criteria

According to Standard EN 50693, the cut-off criteria can be set to a maximum of 5 % of the overall environmental impacts. The raw material life cycle stage includes the extraction of raw materials. No cut-off rules were used to hide significant impact.

Fiber-optic cables and their connectors are neglected, due to lack of adequate material in library and complexity of model. Although, their mass represents less than 0,01% of that of the whole panel.

The packaging is also included in the functional unit. Sticking labels have been excluded since their weight is negligibly small compared to the whole product. All product manuals are excluded, due to not being printed and are available in ABB Library and on the Internet.

Surface treatments like galvanizing and tin plating, also coating powder have been considered in the LCA model.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE		
Approved	Public	2UFB104261	A	EN	9/17		
© Copyright 2024 ABB. All rights reserved.							

Inventory Analysis

Manufacturing Stage (upstream)

The life cycle inventory in the upstream manufacturing stage is based on the primary data available from ABB. Datasets are applied accordingly, to the best of our knowledge, to represent each material, manufacturing process, and surface treatment.

Using the ecoinvent database, the steels are mainly modelled with *Steel, low-alloyed {GLO}/ market for* and the electronic parts are mainly modelled with *Electronic component, passive, un-specified {GLO}/ market for*. To account for the production activities of metal, *Metal working, average* and *Sheet rolling, steel* are the most frequently used processes. Surface treatments are also included, and the most common surface treatments are ecoinvent *Zinc coat, coils* and ecoinvent *Tin plating, pieces*.

Additionally, supply chain transports are added as far as data is available between ABB, the suppliers, and sub-suppliers. Only primary suppliers are considered. The rest of the transports are assumed to already be included in ecoinvent's "market for"-processes.

Manufacturing Stage (core)

In the core manufacturing stage, utility consumption and waste generation at the ABB manufacturing site are accounted for. The packaging materials and accessories associated with the product are also considered.

Distribution

The transport distance from the ABB manufacturing site to the site of installation is assumed to be 300 km by lorry, as suggested by the PCR EPDItaly015, as the actual distance is unknown. The environmental impacts can be multiplied accordingly if the actual distance is known.

	Dataset	Amount	Unit	Represent.
Transport	<i>Transport, freight, lorry 16-32 metric ton, EURO4 {RER}</i>	300	km	PCR

Installation

The installation phase only implies manual activities, and no energy is consumed. Therefore, this phase only considers the end-of-life of the packaging materials used.

	Scenario	Transport	Representation
Packaging End-of-Life	Packaging waste by waste management operations (Eurostat, 2021)	100 km by lorry (assumption)	Europe

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE			
Approved	Public	2UFB104261	А	EN	10/17			
© Copyright 2024 ABB, All rights reserved.								

Use

The use stage considers the power losses over the reference service life of 20 years as defined in the functional unit.

The power loss of main power circuit and auxiliary circuits are defined based on measurement data from the type test of device.

Specific 24h daily traffic - rush hours, night down time, etc. needs to be taken into account, so best approximation of the daily load profile class III of IEC 60146-1-1 was taken. Because this product is sold globally and is not limited to any specific country, the latest energy mix of the European Union is adopted as suggested by the standard EN 50693. The emission factor of the energy mix is presented below.

	Dataset					Unit	Represent.
Energy	Electricity, market grou	medium up for Cut	<i>voltage t-off, S</i>	{RER}/	0.361	kg CO₂- eq./kWh	Europe

To provide failure-free work of device during service life, predetermined preventive maintenance actions needs to be taken and for some components replacement or repair is required. In this cases, additional spare parts were included, with transport process to destination point.

End of life

Decommissioning of the product only implies manual activities, and no energy is consumed. Therefore, this phase only considers the end-of-life of the product.

	Scenario	Transport	Representation
Product End-of-Life	IEC/TR 62635 (Annex D.3)*	100 km by lorry (assumption)	Europe

*A conservative approach is adopted by considering all parts as either: requiring selective treatment, difficult to process, or going through a separation process; no individual part is considered as a single recyclable material.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE			
Approved	Public	2UFB104261	А	EN	11/17			
© Copyright 2024 ABB. All rights reserved.								

∏F Environmental Indicators

In accordance with the PCR EPDItaly007, the environmental impact indicators are determined by using the characterization factors and impact assessment methods specified in EN 15804:2012+A2:2019.

Enviline[™] ESS 3000 Reference product

			Cradle-1	to-gate				
					Cradle-t	o-grave		
Impact	Unit	Total	UPSTREAM	CORE		DOWNS	STREAM	
category	om	Total	Manufa	cturing	Distribution	Installation	Use and maintenance	End-of-life
GWP – total	kg CO₂ eq.	4.36E+05	7.96E+04	8.79E+03	2.97E+02	1.33E+02	3.45E+05	1.91E+03
GWP – fossil	kg CO₂ eq.	4.23E+05	7.91E+04	8.96E+03	2.96E+02	1.33E+01	3.32E+05	1.80E+03
GWP – biogenic	kg CO₂ eq.	1.25E+04	3.11E+02	-1.69E+02	2.70E-01	1.20E+02	1.21E+04	1.14E+02
GWP – luluc	kg CO₂ eq.	9.94E+02	1.61E+02	2.84E+00	1.45E-01	4.06E-03	8.29E+02	6.71E-01
ODP	kg CFC-11 eq.	3.43E-02	2.81E-02	1.07E-04	6.49E-06	1.62E-07	6.07E-03	6.38E-06
AP	mol H+ eq.	2.52E+03	7.73E+02	5.45E+01	1.23E+00	4.33E-02	1.68E+03	2.81E+00
EP – freshwater	kg P eq.	3.83E+02	6.83E+01	8.80E+00	2.09E-02	1.19E-03	3.06E+02	1.74E-01
EP – marine	kg N eq.	4.10E+02	1.01E+02	8.32E+00	4.68E-01	5.39E-02	2.99E+02	1.46E+00
EP – terrestrial	mol N eq.	3.96E+03	1.22E+03	7.39E+01	5.00E+00	1.87E-01	2.65E+03	8.39E+00
POCP	kg NMVOC eq.	1.36E+03	4.78E+02	2.30E+01	1.80E+00	6.19E-02	8.55E+02	2.46E+00
ADP – minerals and metals	kg Sb eq.	1.36E+01	1.12E+01	7.50E-03	9.58E-04	2.28E-05	2.38E+00	4.27E-03
ADP – fossil	MJ, net calorific value	8.70E+06	9.73E+05	1.04E+05	4.23E+03	1.12E+02	7.61E+06	6.20E+03
WDP	m³ eq.	9.42E+04	1.55E+04	5.51E+02	1.72E+01	5.25E-01	7.81E+04	9.54E+01

GWP-fossil: Global Warming Potential fossil; GWP-biogenic: Global Warming Potential biogenic; GWP-luluc: Global Warming Potential land use and land use change; ODP: Depletion potential of the stratospheric ozone layer; AP: Acidification potential; EP-freshwater: Eutrophication potential-freshwater compartment; EP-marine: Eutrophication potential-marine compartment; EP-terrestrial: Eutrophication potential-accumulated exceedance; POCP: Formation potential of tropospheric ozone; ADPminerals & metals: Abiotic Depletion for non-fossil resources potential; ADP-fossil: Abiotic Depletion for fossil resources potential; WDP: Water deprivation potential.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE			
Approved	Public	2UFB104261	А	EN	12/17			
© Copyright 2024 ABB, All rights reserved.								

ENVIRONMENTAL PRODUCT DECLARATION

			Cradle-	to-gate				
					Cradle-to-grave			
Resource use	Unit	Total	UPSTREAM	CORE		DOWNS	STREAM	
parameters	onic	Total	Manufa	cturing	Distribution	Installation	Use and maintenance	End-of-life
PENRE	MJ, low cal. value	8.68E+06	9.58E+05	1.04E+05	4.23E+03	1.12E+02	7.61E+06	6.20E+03
PERE	MJ, low cal. value	1.58E+06	1.11E+05	9.89E+03	6.56E+01	2.16E+00	1.46E+06	6.05E+02
PENRM	MJ, low cal. value	1.56E+04	1.50E+04	2.12E+02	0.00E+00	0.00E+00	3.56E+02	0.00E+00
PERM	MJ, low cal. value	3.41E+03	0.00E+00	3.41E+03	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PENRT	MJ, low cal. value	8.70E+06	9.73E+05	1.04E+05	4.23E+03	1.12E+02	7.61E+06	6.20E+03
PERT	MJ, low cal. value	1.58E+06	1.11E+05	1.33E+04	6.56E+01	2.16E+00	1.46E+06	6.05E+02
FW	m³	6.72E+03	5.62E+02	2.12E+02	6.03E-01	2.15E-02	5.95E+03	3.51E+00
MS	kg	1.94E+03	1.93E+03	1.57E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF	МЈ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRSF	МЈ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

PENRE: Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw material; PERE: Use of renewable primary energy excluding renewable primary energy resources used as raw material; PENRM: Use of non-renewable primary energy resources used as raw material; PENRM: Use of renewable primary energy resources used as raw material; PENRT: Total use of non-renewable primary energy resources (primary energy and primary energy resources used as raw materials); PERT: Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials); PERT: Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials); PERT: Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials); PERT: Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials); PERT: Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials); PERT: Total use of fresh water; MS: Use of secondary materials; RFS: Use of renewable secondary fuels; NRSF: Use of non-renewable secondary fuels.

			Cradle-to-gate					
					Cradle-t	o-grave		
System output	1124	T I	UPSTREAM	CORE		DOWNS	STREAM	
indicators	Unit	Total	Manufacturing		Distribution	Installation	Use and maintenance	End-of-life
HWD	kg	1.87E+01	8.63E+00	1.50E-01	2.69E-02	6.46E-04	9.83E+00	2.46E-02
NHWD	kg	3.61E+04	1.27E+04	6.41E+02	2.07E+02	1.02E+02	2.11E+04	1.31E+03
RWD	kg	5.70E+01	1.69E+00	6.56E-02	1.37E-03	4.08E-05	5.52E+01	1.16E-02
MER	kg	6.49E+02	0.00E+00	1.43E+02	0.00E+00	7.81E+01	0.00E+00	4.27E+02
MFR	kg	5.08E+03	3.92E+02	1.05E+03	0.00E+00	8.38E+01	0.00E+00	3.56E+03
CRU	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
ETE	MJ	2.48E+03	0.00E+00	8.87E+02	0.00E+00	3.27E+02	0.00E+00	1.26E+03
EEE	MJ	1.33E+03	0.00E+00	4.51E+02	0.00E+00	1.81E+02	0.00E+00	7.01E+02

HWD: hazardous waste disposed; NHWD: non-hazardous waste disposed; RWD: radioactive waste disposed; MER: materials for energy recovery; MFR: material for recycling; CRU: components for reuse; ETE: exported thermal energy; EEE: exported electricity energy.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE	
Approved	Public	2UFB104261	A	EN	13/17	
© Copyright 2024 ABB, All rights reserved.						

Extrapolation rules

EnvilineTM ESS 3000 lineup is configurable and built with 3 units - which were modelled separately – 1 CCU, 1 CU and from 1 up to 8 SU (Cabinet with 2 Storage Carts). All the analyzed configurations have the same main functionality, product standards and manufacturing technology, so extrapolation rules are established according to EN 50693.

The different life cycle stages can be extrapolated to other configurations of the same product by applying a rule of proportionality to the parameters, presented in the following table.

	T !	UPSTREAM	CORE		DOWNS	STREAM	
Configuration	l otal Manu		cturing	Distribution	Installation	Use and maintenance	End-of-life
1CCU + 1CU + 1SU	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1CCU + 1CU + 2SU	1.19	1.66	1.37	1.44	1.52	1.08	1.67
1CCU + 1CU + 3SU	1.39	2.33	1.73	1.87	2.05	1.16	2.34
1CCU + 1CU + 4SU	1.58	2.99	2.10	2.31	2.57	1.23	3.00
1CCU + 1CU + 5SU	1.77	3.66	2.46	2.75	3.10	1.31	3.67
1CCU + 1CU + 6SU	1.97	4.32	2.83	3.18	3.62	1.39	4.34
1CCU + 1CU + 7SU	2.16	4.98	3.19	3.62	4.15	1.47	5.01
1CCU + 1CU + 8SU	2.36	5.65	3.56	4.06	4.67	1.55	5.67

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE	
Approved	Public	2UFB104261	А	EN	14/17	
© Copyright 2024 ABB. All rights reserved.						

Sensitivity analysis

A sensitivity analysis is conducted to understand how the impact category "GWP – total" varies for Enviline™ ESS 3000 sold in different geographical locations. Bielsko-Biała is currently the only manufacturing location, thus manufacturing site remains the same. Distribution stage is modelled according to PCR EPDItaly015, with intercontinental transport of 300km in every scenario. Energy mix in the Use stage is selected according to geographical location. The results are presented in following table.

Conneria	Tetel	UPSTREAM	CORE	DOWNSTREAM			
Scenario	TOLAI	Manufacturing		Distribution	Installation	Use and maintenance	End-of-life
Declared scenario Use stage: Europe	4.36E+05	7.96E+04	8.79E+03	2.97E+02	1.33E+02	3.45E+05	1.91E+03
RAF Use stage: Africa	7.98E+05	7.96E+04	8.79E+03	2.97E+02	1.33E+02	7.07E+05	1.91E+03
RAS Use stage: Asia	9.64E+05	7.96E+04	8.79E+03	2.97E+02	1.33E+02	8.74E+05	1.91E+03
RLA Use stage: Latin America	4.50E+05	7.96E+04	8.79E+03	2.97E+02	1.33E+02	3.59E+05	1.91E+03
RME Use stage: Middle East	8.77E+05	7.96E+04	8.79E+03	2.97E+02	1.33E+02	7.86E+05	1.91E+03
RNA Use stage: Northern America	5.12E+05	7.96E+04	8.79E+03	2.97E+02	1.33E+02	4.22E+05	1.91E+03
GLO Use stage: Global	7.66E+05	7.96E+04	8.79E+03	2.97E+02	1.33E+02	6.75E+05	1.91E+03

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE	
Approved	Public	2UFB104261	A	EN	15/17	
© Copyright 2024 ABB. All rights reserved.						

Additional Environmental Information

Circularity Values

The recyclability potential of the product (excluding packaging) is calculated by dividing "MFR: material for recycling" in the end-of-life stage by the total weight of the product. As a result, the recyclability potential of the product is 71 %. The result(s) is/are representative for Europe according to IEC/TR 62635.

The recycled content and recyclability potential of the packaging is calculated by dividing "MS: Use of secondary materials" in the core manufacturing stage and "MFR: material for recycling" in the installation stage by the total weight of the packaging. The recycled content is based on primary data, and the recyclability potential is representative for Europe according to Eurostat (2021). The results are presented below.

	Recycled content	Recyclability potential
Packaging materials	6 %	32 %

Greenhouse gas emissions from the use of electricity in the manufacturing phase

Production mix from import, medium voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process.

Energy mix	Source	Amount	Unit
Polish energy mix; <i>Electricity, medium</i> voltage {PL} market group for Cut-off, S	Ecoinvent v3.9.1	0.95	kg CO ₂ -eq/kWh

Dangerous substances

The product contains no substances given by the REACH Candidate list.

Indoor environment

The product meets the requirements for low emissions.

Carbon footprint

Carbon footprint has not been worked out for the product.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE		
Approved	Public	2UFB104261	А	EN	16/17		
© Copyright 2024 ABB. All rights reserved.							

References

Kustra J. (2024). Enviline™ ESS 3000 – Energy Storage System: Life Cycle Assessment Report (Report No. 2UFB104260, rev. A). ABB Switzerland Ltd.

ecoinvent. ecoinvent v3.9.1 (2022). https://ecoinvent.org/the-ecoinvent-database/data-releases/ecoinvent-3-9-1/ European Committee for Standardization. (2019). Product category rules for life cycle assessments of electronic and electrical products and systems (EN 50693:2019).

European Committee for Standardization. (2019). Sustainability of constructions - Environmental product declarations (EN 15804:2012+A2:2019).

Eurostat. (2021). Packaging waste by waste management operations.

https://ec.europa.eu/eurostat/databrowser/view/ENV_WASPAC/default/table?lang=en

ICMQ S.p.A. (2023). PCR EPDItaly007-Electronic and electrical products and systems, rev. 3.0 (2023-01-13). EPDItaly. https://www.epditaly.it/en/view-pcr/

ICMQ S.p.A. (2022). PCR EPDItaly015 - Electronic and electrical products and systems - switchboards, rev. 1.5 (2022-02-23). EPDItaly. https://www.epditaly.it/en/view-pcr/

ICMQ S.p.A (2020b). Regulations of the EPDItaly Programme Regulations, rev. 5.2 (2020-02-16). EPDItaly.

https://www.epditaly.it/en/wp-content/uploads/2016/12/EPDITALY-Regulament_rev-5.2_EN.pdf International Electrotechnical Commission. (2012). Semiconductor converters - General re-guirements and line commutated converters - Part 1-1: Specification of basic re-quirements, Edition 4.0 (2009-06) (IEC/TR 60146-1-1).

International Electrotechnical Commission. (2012). Guidelines for end-of-life information provided by manufacturers and recyclers and for recyclability rate calculation of electrical and electronic equipment, Edition 1.0 (2012-10-1) (IEC/TR 62635).

International Organization for Standardisation. (2006). Environmental management - Life cycle assessment - Principles and framework (ISO Standard No. 14040:2006). https://www.iso.org/standard/37456.html

International Organization for Standardisation. (2006). Environmental management - Life cycle assessment - Requirements and guidelines (ISO Standard No. 14044:2006). https://www.iso.org/standard/38498.html

PRé Sustainability. (2023). SimaPro (version 9.5) [computer software]. https://pre-

sustainability.com/solutions/tools/simapro/

SeaRates. (2022). Shipping Distances & Time Calculator. https://www.searates.com/services/distances-time The Norwegian EPD Foundation/EPD-Norge. (2019). General Programme Instructions 2019, Version 3.0 (2019-04-24).

	Program Opera	ator and publisher				
🖒 epd-nor	ae The Norwegiar	EPD Foundation	Ph.	+47 23 08 80 00		
The Norwegian EPD Foundation	Post Box 5250	Majorstuen,	email	post@epd-norge.no		
	0303 Oslo, Nor	way	web	www.epd-norge.no		
	Owner of the c	leclaration				
	ABB Switzerlan	ABB Switzerland Ltd, Group				
Арр	Technology Ma	Technology Management				
	Brown Boveri S	Brown Boveri Straße 6, 5400		web www.abb.com		
	Baden, Switzer	Baden, Switzerland		www.abb.com		
	Author					
	Jakub Kustra					
	ABB Poland	ABB Poland		jakub.kustra@pl.abb.com		
	Starowislna 13	Starowislna 13a, 31-038 Cracow		www.abb.com		
STATUS	ECURITY LEVEL	DOCUMENT ID.		REV.	LANG.	PAGE
Approved F	Public	2UFB104261		A	EN	17/17

© Copyright 2024 ABB. All rights reserved.