

Environmental product declaration

in accordance with ISO 14025 and EN 15804+A2

TVJ-D

The Norwegian EPD Foundation

Owner of the declaration:

TROX Group

Product:

TVJ-D

Declared unit:

1 pcs

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core

NPCR 030:2021 Part B for ventilation components

Program operator:

The Norwegian EPD Foundation

Declaration number:

NEPD-8314-7988-EN

Registration number:

NEPD-8314-7988-EN

Issue date: 04.12.2024

Valid to: 04.12.2029

EPD software:

LCAno EPD generator ID: 646319

General information

Product

TVJ-D

Program operator:

The Norwegian EPD Foundation
Post Box 5250 Majorstuen, 0303 Oslo, Norway

Phone: +47 977 22 020 web: www.epd-norge.no

Declaration number:

NEPD-8314-7988-EN

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR 030:2021 Part B for ventilation components

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit:

1 pcs TVJ-D

Declared unit with option:

A1-A3,A4,B1,B2,B3,B4,B5,B6,B7,C1,C2,C3,C4,D

Functional unit:

General information on verification of EPD from EPD tools:

Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Verification of each EPD is made according to EPD-Norway's guidelines for verification and approval requiring that tools are i) integrated into the company's environmental management system, ii) the procedures for use of the EPD tool are approved by EPD-Norway, and iii) the process is reviewed annually by an independent third party verifier. See Appendix G of EPD-Norway's General Programme Instructions for further information on EPD tools

Verification of EPD tool:

Independent third party verification of the EPD tool, background data and test-EPD in accordance with EPDNorway's procedures and guidelines for verification and approval of EPD tools.

Third party verifier:

Alexander Borg, Asplan Viak AS

(no signature required)

Owner of the declaration:

TROX Group

Contact person: Alina Buchner Phone: +49 2845 2020

e-mail: productsustainability-de@troxgroup.com

Manufacturer:

TROX Group Heinrich-Trox-Platz 1

47506 Neukirchen-Vluyn, Germany

Place of production:

TROX GmbH - Werk Anholt Gendringer Str. 85 46419 Isselburg, Germany

Management system:

ISO 9001, ISO 14001:2015, ISO 50001:2018

Organisation no:

DE 120250070

Issue date:

04.12.2024

Valid to:

04.12.2029

Year of study:

2023

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

Development and verification of EPD:

The declaration is created using EPD tool lca.tools ver EPD2022.03, developed by LCA.no. The EPD tool is integrated in the company's management system and has been approved by EPD Norway.

Developer of EPD: Jule Dallmann

Reviewer of company-specific input data and EPD: Alina Buchner

Approved:

Håkon Hauan

Managing Director of EPD-Norway

Product

Product description:

For normal and high volume flow rate ranges.

Rectangular air terminal units for standard applications in supply air or extract air systems with variable volume flow rates.

For more information see: https://www.trox.de/en/vav-terminal-units/tvj-f8650873d3e5f5a2

Product specification

Rectangular VAV terminal units for variable and constant air volume systems, suitable for supply or extract air, available in 48 nominal sizes. High volume flow rate control accuracy. Commissioning ready device, consisting of the mechanical components and the electronic control components. Each unit contains an averaging differential pressure sensor for volume flow rate measurement and damper blades. Factory assembled control components complete with wiring and tubing Differential pressure sensor with 3 mm measuring holes, thereby resistant to dust and pollution. Position of the damper blade indicated externally at shaft extension. Damper blade open at delivery, thereby air flow also given without control function; except variants with defined safety position NC.

Flanges on both sides, suitable for duct connection.

This EPD includes the environmental data of the product series TVJ-D.

The following represents a representative dataset of the most sold variant with controller in the declared sales year (TVJ-D/300x200/BM0).

Materials	lem.	%		
	kg			
Electronic - Unspecified	0,74	5,32		
Insulation, Mineral based	0,37	2,68		
Metal - Galvanized Steel	10,84	77,80		
Plastic - Acrylonitrile butadiene styrene (ABS)	0,25	1,80		
Plastic - Nylon (PA)	0,00	0,00		
Plastic - Polybutylene terephthalate (PBT)	0,00	0,03		
Plastic - Polyethylene	0,03	0,22		
Plastic - Polypropylene (PP)	0,26	1,87		
Plastic - Polyurethane (PUR)	0,09	0,67		
Metal - Aluminium	1,34	9,60		
Metal - Stainless steel	0,00	0,01		
Total	13,94	100,00		
Packaging	kg	%		
Packaging - Cardboard	1,20	66,67		
Packaging - Paper	0,60	33,33		
Total incl. packaging	15,74	100,00		

Technical data:

Nominal sizes: 200×100 to 1000×1000 mm.

Volume flow rate range: 45 – 10100 l/s or 162 - 36360 m³ /h.

Volume flow rate control range (unit with dynamic differential pressure measurement): Approx. 20 to 100 % of the nominal volume flow rate.

Minimum differential pressure: 5 - 40 Pa. Maximum differential pressure: 1000 Pa. Operating temperature: 10 - 50 °C.

For more technical data see: https://www.trox.de/en/vav-terminal-units/tvj-f8650873d3e5f5a2

Market:

Europe.

Reference service life, product

20 years.

Reference service life, building or construction works

60 years.

LCA: Calculation rules

Declared unit:

1 pcs TVJ-D

Cut-off criteria:

All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

Allocation:

The allocation is made in accordance with the provisions of EN 15804. Energy, water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

Data quality:

Specific data for the product composition are provided by the manufacturer. The data represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on EPDs according to EN 15804 and different LCA databases. The data quality of the raw materials in A1 is presented in the table below.

Materials	Source	Data quality	Year
Electronic - Unspecified	ecoinvent 3.6	Database	2019
Insulation, Mineral based	ecoinvent 3.6	Database	2019
Metal - Aluminium	ecoinvent 3.6	database	2019
Metal - Galvanized Steel	ecoinvent 3.6	Database	2019
Metal - Galvanized Steel	ecoinvent 3.6	Database	2020
Metal - Stainless steel	ecoinvent 3.6	Database	2019
Packaging - Cardboard	ecoinvent 3.6	Database	2019
Packaging - Paper	ecoinvent 3.6	Database	2019
Plastic - Acrylonitrile butadiene styrene (ABS)	ecoinvent 3.6	Database	2019
Plastic - Nylon (PA)	ecoinvent 3.6	Database	2019
Plastic - Polybutylene terephthalate (PBT)	ecoinvent 3.6	Database	2019
Plastic - Polyethylene	ecoinvent 3.6	Database	2019
Plastic - Polypropylene (PP)	ecoinvent 3.6	Database	2019
Plastic - Polyurethane (PUR)	ecoinvent 3.6	Database	2019

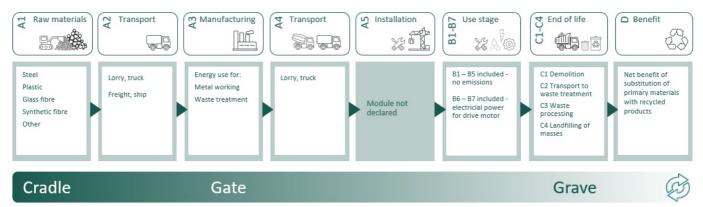
System boundaries (X=included, MND=module not declared, MNR=module not relevant)

	P	roduct stag	je		ruction ion stage	Use stage End of life stage				Beyond the system boundaries							
, or o	raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De- construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling-potential
	A1	A2	A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
	Χ	Х	Х	X	MND	Χ	Χ	Χ	Х	Х	X	Х	Х	Х	X	Х	X

System boundary:

A1 includes the extraction and production of all raw materials used in the product.

A2 includes all types of transportation methods used for the raw materials to the production site in Anholt, Germany.


A3 includes the manufacturing and packaging process of the air handling unit.

A4 includes the transport to the market/user.

A5 modules not declared.

- B1 B5 No emissions are released during use of the product (B1). Maintenance (B2) and repair (B3) or replacement of individual components (B4) is not relevant during the service life under consideration (maintenance-free). According to the manufacturer, the product does not need to be replaced during its service life (B5). The modules are therefore labelled with '0'.
- B6 B7 During operation of the building, electrical energy is required to supply the electric drive motor and setpoint adjustments of the product.
- C1 C4 includes the use of energy and other auxiliary materials required to demolish the building or construction in which the product is included, transport from the building site to the waste processing facility, distribution of the product to different waste treatment methods and the disposal.

D includes energy and materials that have achieved a new function and are no longer considered waste.

Additional technical information:

Suitable for volume flow rate ranges up to approx. 62,000 m³/h or 17,000 l/s.

Suitable for the control of volume flow rate, room pressure or duct pressure.

 ${\bf Electronic\ control\ components\ for\ different\ applications\ (Easy,\ Compact,\ Universal,\ and\ LABCONTROL)}.$

High control accuracy.

Closed blade air leakage to EN 1751, Class 1 (B + H = 600 mm).

Casing air leakage to EN 1751, class B.

Optional equipment and accessories:

Acoustic cladding for the reduction of case-radiated noise.

Secondary silencer Type TX for the reduction of air-regenerated noise.

Hot water heat exchanger Type WT for reheating the airflow.

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Transport from production place to user (A4)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, 16-32 tonnes, EURO 6 (km)	36,7 %	800	0,043	l/tkm	34,40
Operational energy (B6)	Unit	Value			
Electricity, European average (kWh)	kWh	2226,00			
De-construction demolition (C1)	Unit	Value			
Demolition of building per kg of ventilation product (kg)	kg/DU	13,98			
Transport to waste processing (C2)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, 16-32 tonnes, EURO 6 (km)	36,7 %	50	0,043	l/tkm	2,15
Waste processing (C3)	Unit	Value			
Materials to recycling (kg)	kg	11,01			
Waste treatment per kg plastic, industrial electronics, municipal incineration with fly ash extraction (kg)	kg	0,13			
Waste treatment per kg Plastics, incineration (kg)	kg	0,05			
Waste treatment per kg Electronic scrap, incineration (kg)	kg	0,74			
Waste treatment per kg Polypropylene (PP), incineration (kg)	kg	0,13			
Waste treatment per kg Polyethylene (PE), incineration (kg)	kg	0,02			
Disposal (C4)	Unit	Value			
Waste, scrap steel, to landfill (kg)	kg	1,07			
Waste, aluminium, to landfill (kg)	kg	0,11			
Landfilling of ashes from incineration per kg plastic, industrial electronics, From municipal incineration with fly ash extraction (kg)	kg	0,01			
Waste, plastic, mixture, to landfill (kg)	kg	0,32			
Landfilling of ashes from incineration of Plastics, process per kg ashes and residues (kg)	kg	0,00			
Landfilling of ashes from incineration of Electronic scrap, process of ashes and residues (kg)	kg	0,52			
Landfilling of ashes from incineration of Polypropylene (PP), process per kg ashes and residues (kg)	kg	0,00			
Waste, mineral wool, to landfil (kg)	kg	0,37			
Landfilling of ashes from incineration of Polyethylene (PE), process per kg ashes and residues (kg)	kg	0,00			
Benefits and loads beyond the system boundaries (D)	Unit	Value			
Substitution of primary steel with net scrap (kg)	kg	2,23			
Substitution of primary aluminium with net scrap (kg)	kg	1,21			
Substitution of electricity (MJ)	MJ	0,45			
Substitution of thermal energy, district heating (MJ)	МЈ	6,80			

LCA: Results

The LCA results are presented below for the declared unit defined on page 2 of the EPD document.

Environ	mental impact								
	Indicator	Unit	A1-A3	A4	B1	B2	В3	B4	B5
	GWP-total	kg CO ₂ -eq	9,41E+01	2,06E+00	0	0	0	0	0
	GWP-fossil	kg CO ₂ -eq	9,26E+01	2,06E+00	0	0	0	0	0
	GWP-biogenic	kg CO ₂ -eq	1,14E+00	8,51E-04	0	0	0	0	0
	GWP-luluc	kg CO ₂ -eq	3,43E-01	7,32E-04	0	0	0	0	0
Ö	ODP	kg CFC11 -eq	8,45E-06	4,66E-07	0	0	0	0	0
Œ	AP	mol H+ -eq	8,16E-01	5,91E-03	0	0	0	0	0
**	EP-FreshWater	kg P -eq	9,20E-03	1,64E-05	0	0	0	0	0
**	EP-Marine	kg N -eq	1,08E-01	1,17E-03	0	0	0	0	0
	EP-Terrestial	mol N -eq	2,19E+00	1,31E-02	0	0	0	0	0
	POCP	kg NMVOC -eq	3,67E-01	5,01E-03	0	0	0	0	0
	ADP-minerals&metals ¹	kg Sb-eq	5,56E-02	5,68E-05	0	0	0	0	0
	ADP-fossil ¹	MJ	1,28E+03	3,11E+01	0	0	0	0	0
%	WDP ¹	m ³	9,60E+03	3,01E+01	0	0	0	0	0
	Indicator	Unit	В6	В7	C1	C2	C3	C4	D
	Indicator GWP-total	Unit kg CO ₂ -eq	B6 9,53E+02	B7 0	C1 1,84E-02	C2 1,29E-01	C3 1,65E+00	C4 1,07E-01	D -1,35E+01
•									
_	GWP-total	kg CO ₂ -eq	9,53E+02	0	1,84E-02	1,29E-01	1,65E+00	1,07E-01	-1,35E+01
	GWP-total GWP-fossil	kg CO ₂ -eq	9,53E+02 9,44E+02	0	1,84E-02 1,84E-02	1,29E-01 1,29E-01	1,65E+00 1,65E+00	1,07E-01	-1,35E+01 -1,32E+01
	GWP-total GWP-fossil GWP-biogenic	kg CO ₂ -eq kg CO ₂ -eq kg CO ₂ -eq	9,53E+02 9,44E+02 6,64E+00	0 0 0	1,84E-02 1,84E-02 3,46E-06	1,29E-01 1,29E-01 5,32E-05	1,65E+00 1,65E+00 1,21E-04	1,07E-01 1,07E-01 1,09E-04	-1,35E+01 -1,32E+01 -5,07E-02
	GWP-total GWP-fossil GWP-biogenic GWP-luluc	kg CO ₂ -eq kg CO ₂ -eq kg CO ₂ -eq kg CO ₂ -eq	9,53E+02 9,44E+02 6,64E+00 2,20E+00	0 0 0	1,84E-02 1,84E-02 3,46E-06 1,45E-06	1,29E-01 1,29E-01 5,32E-05 4,58E-05	1,65E+00 1,65E+00 1,21E-04 2,86E-05	1,07E-01 1,07E-01 1,09E-04 2,68E-05	-1,35E+01 -1,32E+01 -5,07E-02 -2,06E-01
	GWP-total GWP-fossil GWP-biogenic GWP-luluc ODP	kg CO ₂ -eq	9,53E+02 9,44E+02 6,64E+00 2,20E+00 7,99E-05	0 0 0 0	1,84E-02 1,84E-02 3,46E-06 1,45E-06 3,98E-09	1,29E-01 1,29E-01 5,32E-05 4,58E-05 2,91E-08	1,65E+00 1,65E+00 1,21E-04 2,86E-05 5,42E-09	1,07E-01 1,07E-01 1,09E-04 2,68E-05 7,31E-09	-1,35E+01 -1,32E+01 -5,07E-02 -2,06E-01 -2,87E-03
	GWP-total GWP-fossil GWP-biogenic GWP-luluc ODP AP	kg CO ₂ -eq kg CO ₂ -eq kg CO ₂ -eq kg CO ₂ -eq kg CFC11 -eq mol H+ -eq	9,53E+02 9,44E+02 6,64E+00 2,20E+00 7,99E-05 5,51E+00	0 0 0 0 0	1,84E-02 1,84E-02 3,46E-06 1,45E-06 3,98E-09 1,93E-04	1,29E-01 1,29E-01 5,32E-05 4,58E-05 2,91E-08 3,69E-04	1,65E+00 1,65E+00 1,21E-04 2,86E-05 5,42E-09 4,46E-04	1,07E-01 1,07E-01 1,09E-04 2,68E-05 7,31E-09 2,16E-04	-1,35E+01 -1,32E+01 -5,07E-02 -2,06E-01 -2,87E-03 -8,51E-02
	GWP-total GWP-fossil GWP-biogenic GWP-luluc ODP AP EP-FreshWater	kg CO ₂ -eq kg CO ₂ -eq kg CO ₂ -eq kg CO ₂ -eq kg CFC11 -eq mol H+ -eq kg P -eq	9,53E+02 9,44E+02 6,64E+00 2,20E+00 7,99E-05 5,51E+00 1,01E-01	0 0 0 0 0 0	1,84E-02 1,84E-02 3,46E-06 1,45E-06 3,98E-09 1,93E-04 6,71E-08	1,29E-01 1,29E-01 5,32E-05 4,58E-05 2,91E-08 3,69E-04 1,03E-06	1,65E+00 1,65E+00 1,21E-04 2,86E-05 5,42E-09 4,46E-04 1,06E-06	1,07E-01 1,07E-01 1,09E-04 2,68E-05 7,31E-09 2,16E-04 8,89E-07	-1,35E+01 -1,32E+01 -5,07E-02 -2,06E-01 -2,87E-03 -8,51E-02 -5,69E-04
	GWP-total GWP-fossil GWP-biogenic GWP-luluc ODP AP EP-FreshWater EP-Marine	kg CO ₂ -eq kg CO ₂ -eq kg CO ₂ -eq kg CO ₂ -eq kg CFC11 -eq mol H+ -eq kg P -eq kg N -eq	9,53E+02 9,44E+02 6,64E+00 2,20E+00 7,99E-05 5,51E+00 1,01E-01 7,00E-01	0 0 0 0 0 0	1,84E-02 1,84E-02 3,46E-06 1,45E-06 3,98E-09 1,93E-04 6,71E-08 8,51E-05	1,29E-01 1,29E-01 5,32E-05 4,58E-05 2,91E-08 3,69E-04 1,03E-06 7,31E-05	1,65E+00 1,65E+00 1,21E-04 2,86E-05 5,42E-09 4,46E-04 1,06E-06 2,00E-04	1,07E-01 1,07E-01 1,09E-04 2,68E-05 7,31E-09 2,16E-04 8,89E-07 1,03E-04	-1,35E+01 -1,32E+01 -5,07E-02 -2,06E-01 -2,87E-03 -8,51E-02 -5,69E-04 -1,18E-02
	GWP-total GWP-fossil GWP-biogenic GWP-luluc ODP AP EP-FreshWater EP-Marine EP-Terrestial	kg CO ₂ -eq kg CO ₂ -eq kg CO ₂ -eq kg CO ₂ -eq kg CFC11 -eq mol H+ -eq kg P -eq kg N -eq mol N -eq	9,53E+02 9,44E+02 6,64E+00 2,20E+00 7,99E-05 5,51E+00 1,01E-01 7,00E-01 8,62E+00	0 0 0 0 0 0 0	1,84E-02 1,84E-02 3,46E-06 1,45E-06 3,98E-09 1,93E-04 6,71E-08 8,51E-05 9,34E-04	1,29E-01 1,29E-01 5,32E-05 4,58E-05 2,91E-08 3,69E-04 1,03E-06 7,31E-05 8,18E-04	1,65E+00 1,65E+00 1,21E-04 2,86E-05 5,42E-09 4,46E-04 1,06E-06 2,00E-04 2,04E-03	1,07E-01 1,07E-01 1,09E-04 2,68E-05 7,31E-09 2,16E-04 8,89E-07 1,03E-04 7,22E-04	-1,35E+01 -1,32E+01 -5,07E-02 -2,06E-01 -2,87E-03 -8,51E-02 -5,69E-04 -1,18E-02 -1,28E-01
	GWP-total GWP-fossil GWP-biogenic GWP-luluc ODP AP EP-FreshWater EP-Marine EP-Terrestial POCP	kg CO ₂ -eq kg CO ₂ -eq kg CO ₂ -eq kg CO ₂ -eq kg CFC11 -eq mol H+ -eq kg P -eq kg N -eq mol N -eq kg NMVOC -eq	9,53E+02 9,44E+02 6,64E+00 2,20E+00 7,99E-05 5,51E+00 1,01E-01 7,00E-01 8,62E+00 2,19E+00	0 0 0 0 0 0 0	1,84E-02 1,84E-02 3,46E-06 1,45E-06 3,98E-09 1,93E-04 6,71E-08 8,51E-05 9,34E-04 2,57E-04	1,29E-01 1,29E-01 5,32E-05 4,58E-05 2,91E-08 3,69E-04 1,03E-06 7,31E-05 8,18E-04 3,13E-04	1,65E+00 1,65E+00 1,21E-04 2,86E-05 5,42E-09 4,46E-04 1,06E-06 2,00E-04 2,04E-03 4,97E-04	1,07E-01 1,07E-01 1,09E-04 2,68E-05 7,31E-09 2,16E-04 8,89E-07 1,03E-04 7,22E-04 2,11E-04	-1,35E+01 -1,32E+01 -5,07E-02 -2,06E-01 -2,87E-03 -8,51E-02 -5,69E-04 -1,18E-02 -1,28E-01 -4,66E-02

GWP-total = Global Warming Potential total; GWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment: EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption

Remarks to environmental impacts

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009"

^{*}INA Indicator Not Assessed

^{1.} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

Additional environmental impact indicators									
l	ndicator	Unit	A1-A3	A4	B1	B2	В3	B4	B5
	PM	Disease incidence	7,33E-06	1,26E-07	0	0	0	0	0
	IRP ²	kgBq U235 -eq	5,74E+00	1,36E-01	0	0	0	0	0
	ETP-fw ¹	CTUe	4,81E+03	2,31E+01	0	0	0	0	0
44.	HTP-c ¹	CTUh	3,40E-07	0,00E+00	0	0	0	0	0
48° E	HTP-nc ¹	CTUh	5,26E-06	2,52E-08	0	0	0	0	0
	SQP ¹	dimensionless	6,27E+02	2,18E+01	0	0	0	0	0
li	ndicator	Unit	В6	В7	C1	C2	C3		D
					.	CZ	CS	C4	U
	PM	Disease incidence	1,45E-05	0	5,10E-09	7,87E-09	2,39E-09	3,21E-09	-9,72E-07
	PM IRP ²	Disease incidence kgBq U235 -eq	1,45E-05 1,71E+02						
				0	5,10E-09	7,87E-09	2,39E-09	3,21E-09	-9,72E-07
\$0.00 \$0.00	IRP ²	kgBq U235 -eq	1,71E+02	0	5,10E-09 1,09E-03	7,87E-09 8,50E-03	2,39E-09 1,53E-03	3,21E-09 2,71E-03	-9,72E-07 -5,87E-01
	IRP ² ETP-fw ¹	kgBq U235 -eq CTUe	1,71E+02 1,36E+04	0 0 0	5,10E-09 1,09E-03 1,39E-01	7,87E-09 8,50E-03 1,44E+00	2,39E-09 1,53E-03 2,92E+00	3,21E-09 2,71E-03 7,13E+01	-9,72E-07 -5,87E-01 -3,02E+02

PM = Particulate Matter emissions; IRP = Ionizing radiation – human health; ETP-fw = Eco toxicity – freshwater; HTP-c = Human toxicity – cancer effects; HTP-nc = Human toxicity – non cancer effects; SQP = Potential Soil Quality Index (dimensionless)

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009"

^{*}INA Indicator Not Assessed

^{1.} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

^{2.} This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

Resource use									
	ndicator	Unit	A1-A3	A4	B1	B2	В3	B4	B5
Ş.F.	PERE	MJ	1,93E+02	4,45E-01	0	0	0	0	0
	PERM	MJ	0,00E+00	0,00E+00	0	0	0	0	0
ុក្ រ	PERT	MJ	2,11E+02	4,45E-01	0	0	0	0	0
	PENRE	MJ	1,26E+03	3,11E+01	0	0	0	0	0
.Ås	PENRM	MJ	2,44E+01	0,00E+00	0	0	0	0	0
I	PENRT	MJ	1,28E+03	3,11E+01	0	0	0	0	0
	SM	kg	8,88E+00	0,00E+00	0	0	0	0	0
	RSF	MJ	4,79E+00	1,59E-02	0	0	0	0	0
	NRSF	MJ	2,09E+01	5,69E-02	0	0	0	0	0
∳ 6	FW	m ³	1,38E+00	3,33E-03	0	0	0	0	0
	ndicator	Unit	В6	В7	C1	C2	C3	C4	D
i j	PERE	MJ	3,77E+03	0	1,37E-03	2,78E-02	2,78E-02	3,30E-02	-5,45E+01
	PERM	MJ	0,00E+00						
ĕ Ç			0,002:00	0	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
43	PERT	MJ	3,77E+03	0	0,00E+00 1,37E-03	0,00E+00 2,78E-02	0,00E+00 2,78E-02	0,00E+00 3,30E-02	0,00E+00 -5,45E+01
The state of the s	PERT PENRE	MJ							
			3,77E+03	0	1,37E-03	2,78E-02	2,78E-02	3,30E-02	-5,45E+01
	PENRE	MJ	3,77E+03 1,95E+04	0	1,37E-03 2,54E-01	2,78E-02 1,94E+00	2,78E-02 4,55E-01	3,30E-02 5,99E-01	-5,45E+01 -1,57E+02
	PENRE PENRM	MJ	3,77E+03 1,95E+04 0,00E+00	0 0	1,37E-03 2,54E-01 0,00E+00	2,78E-02 1,94E+00 0,00E+00	2,78E-02 4,55E-01 -2,44E+01	3,30E-02 5,99E-01 0,00E+00	-5,45E+01 -1,57E+02 0,00E+00
	PENRE PENRM PENRT	MJ MJ	3,77E+03 1,95E+04 0,00E+00 1,95E+04	0 0 0	1,37E-03 2,54E-01 0,00E+00 2,54E-01	2,78E-02 1,94E+00 0,00E+00 1,94E+00	2,78E-02 4,55E-01 -2,44E+01 -2,39E+01	3,30E-02 5,99E-01 0,00E+00 5,99E-01	-5,45E+01 -1,57E+02 0,00E+00 -1,57E+02
	PENRE PENRM PENRT SM	MJ MJ MJ kg	3,77E+03 1,95E+04 0,00E+00 1,95E+04 0,00E+00	0 0 0 0	1,37E-03 2,54E-01 0,00E+00 2,54E-01 1,25E-04	2,78E-02 1,94E+00 0,00E+00 1,94E+00 0,00E+00	2,78E-02 4,55E-01 -2,44E+01 -2,39E+01 0,00E+00	3,30E-02 5,99E-01 0,00E+00 5,99E-01 5,00E-05	-5,45E+01 -1,57E+02 0,00E+00 -1,57E+02 0,00E+00

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non renewable primary energy resources used as raw materials; PENRT = Total use of non renewable primary energy resources; SM = Use of secondary materials; PENRM = Use of non renewable primary energy resources; SM = Use of secondary materials; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of life - Waste									
In	dicator	Unit	A1-A3	A4	B1	B2	В3	B4	B5
	HWD	kg	7,31E-01	1,60E-03	0	0	0	0	0
Ū	NHWD	kg	2,41E+01	1,51E+00	0	0	0	0	0
	RWD	kg	4,99E-03	2,12E-04	0	0	0	0	0
In	dicator	Unit	В6	В7	C1	C2	C3	C4	D
	HWD	kg	2,93E+00	0	7,47E-06	1,00E-04	2,47E-03	2,66E-02	3,23E-02
Ū	NHWD	kg	6,60E+01	0	3,00E-04	9,45E-02	3,51E-01	2,24E+00	-4,13E+00
₩ <u></u>	RWD	kg	1,39E-01	0	1,76E-06	1,32E-05	1,41E-06	2,16E-06	-5,53E-04

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of life - Output flo	w								
Indicat	or	Unit	A1-A3	A4	B1	B2	В3	B4	B5
@ D	CRU	kg	0,00E+00	0,00E+00	0	0	0	0	0
\$>	MFR	kg	7,52E-01	0,00E+00	0	0	0	0	0
DØ	MER	kg	2,44E-01	0,00E+00	0	0	0	0	0
₹	EEE	MJ	1,44E-01	0,00E+00	0	0	0	0	0
	EET	MJ	2,17E+00	0,00E+00	0	0	0	0	0
Indicat	or	Unit	В6	В7	C1	C2	C3	C4	D
∅>	CRU	kg	0,00E+00	0	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
\$\dagger\$	MFR	kg	0,00E+00	0	1,22E-04	0,00E+00	1,10E+01	4,27E-05	0,00E+00
DF	MER	kg	0,00E+00	0	3,79E-07	0,00E+00	2,71E-01	8, 14E-07	0,00E+00
50	EEE	MJ	0,00E+00	0	1,30E-06	0,00E+00	8,67E-01	4,65E-05	0,00E+00

CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported energy electrical; EET = Exported energy thermal

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

Biogenic Carbon Content							
Indicator	Unit	At the factory gate					
Biogenic carbon content in product	kg C	0,00E+00					
Biogenic carbon content in accompanying packaging	kg C	0,00E+00					

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2

Additional requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Source	Amount	Unit
Electricity, market mix (kWh) - Germany	ecoinvent 3.6	585,93	g CO2-eq/kWh

Dangerous substances

The product contains dangerous substances, more than 0,1% by weight, given by the REACH Candidate List, see table:

Name	CASNo	Amount
Lead	7439-92-1	> 0.3% w/w
Perfluorobutane sulfonic acid (PFBS) and its salts		> 0.1% w/w and < 0.3% w/w
Lead monoxide (lead oxide)	1317-36-8	> 0.1% w/w
2-methylimidazole	693-98-1	> 0.1% w/w
Potassium 1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulphonate	29420-49-3	> 0.1% w/w
Diboron trioxide	1303-86-2	> 0.1% w/w
Lead titanium trioxide	12060-00-3	> 0.1% w/w

Indoor environment

Additional Environmental Information

Additional environmental impact indicators required in NPCR Part A for construction products										
Indicator	Unit	A1-A3	A4	B1	B2	В3	B4	B5		
GWPIOBC	kg CO ₂ -eq	9,40E+01	2,06E+00	0	0	0	0	0		
Indicator	Unit	В6	В7	C1	C2	C3	C4	D		
GWPIOBC	kg CO ₂ -eq	1,02E+03	0	1,84E-02	1,29E-01	1,65E+00	1,07E-01	-1,42E+01		

GWP-IOBC: Global warming potential calculated according to the principle of instantaneous oxidation. In order to increase the transparency of biogenic carbon contribution to climate impact, the indicator GWP-IOBC is required as it declares climate impacts calculated according to the principle of instantaneous oxidation. GWP-IOBC is also referred to as GWP-GHG in context to Swedish public procurement legislation.

Bibliography

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures.

ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines.

EN 15804:2012 + A2:2019 Environmental product declaration - Core rules for the product category of construction products.

ISO 21930:2017 Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products.

ecoinvent v3, Allocation, cut-off by classification, Swiss Centre of Life Cycle Inventories.

Iversen et al., (2021) eEPD v2021.09 Background information for EPD generator tool system verification, LCA.no Report number: 07.21 Graafland and Iversen (2022) EPD generator for NPCR 030 Ventilation components, Background information for EPD generator application and LCA data, LCA.no report number: 12.22

NPCR Part A: Construction products and services. Ver. 2.0. April 2021, EPD-Norge.

NPCR 030 Part B for Ventilation components, Ver. 1.0, 18.05.2021, EPD Norway.

EN ISO 9001:2015 - Quality management systems.

EN ISO 14001:2015 - Environmental management systems.

EN ISO 50001:2018 - Energy management systems.

and norge	Program operator and publisher		+47 977 22 020
© epd-norge	The Norwegian EPD Foundation		post@epd-norge.no
Global program operatør	Post Box 5250 Majorstuen, 0303 Oslo, Norway	web:	www.epd-norge.no
	Owner of the declaration:	Phone:	+49 2845 2020
TROX® TECHNIK	TROX Group		productsustainability-
The art of handling air			de@troxgroup.com
	Heinrich-Trox-Platz 1, 47506 Neukirchen-Vluyn, Germany	web:	https://www.trox.de/en
	Author of the Life Cycle Assessment	Phone:	+47 916 50 916
(LCA)	LCA.no AS	e-mail:	post@lca.no
	Dokka 6A, 1671 Kråkerøy, Norway	web:	www.lca.no
	Developer of EPD generator	Phone:	+47 916 50 916
(LCA)	LCA.no AS	e-mail:	post@lca.no
	Dokka 6A, 1671 Kråkerøy, Norway	web:	www.lca.no
ECO PLATFORM	ECO Platform	web:	www.eco-platform.org
EPD	ECO Portal	web:	ECO Portal
VERIFIED			