

in accordance with ISO 14025 and EN 15804+A2

Protan Ektafol PV 1.2

The Norwegian EPD Foundation

Owner of the declaration: Protan AS

Produkt: Protan Ektafol PV 1.2

Declared unit: 1 m2

This declaration is based on Product Category Rules: CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR 022:2018 Part B for Roof waterproofing **Program operator:** The Norwegian EPD Foundation

Declaration number:

NEPD-8289-7962-EN

Registration number:

NEPD-8289-7962-EN

Issue date: 04.12.2024

Valid to: 04.12.2029

EPD software: LCAno EPD generator ID: 702393

General information

Product:

Protan Ektafol PV 1.2

Program operator:

The Norwegian EPD Foundation Post Box 5250 Majorstuen, 0303 Oslo, Norway Phone: +47 977 22 020 web: www.epd-norge.no

Declaration number:

NEPD-8289-7962-EN

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR 022:2018 Part B for Roof waterproofing

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit:

1 m2 Protan Ektafol PV 1.2

Declared unit (cradle to gate) with option:

A1-A3,A4,A5,C1,C2,C3,C4,D

Functional unit:

General information on verification of EPD from EPD tools:

Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Verification of each EPD is made according to EPD-Norway's guidelines for verification and approval requiring that tools are i) integrated into the company's environmental management system, ii) the procedures for use of the EPD tool are approved by EPD-Norway, and iii) the process is reviewed annually by an independent third party verifier. See Appendix G of EPD-Norway's General Programme Instructions for further information on EPD tools

Verification of EPD tool:

Independent third party verification of the EPD tool, background data and test-EPD in accordance with EPDNorway's procedures and guidelines for verification and approval of EPD tools.

Third party verifier:

Elisabet Amat, GREENIZE projects

(no signature required)

Owner of the declaration:

Protan AS Contact person: Lars Anisdahl Phone: +47 94 01 78 58 e-mail: lars.anisdahl@protan.no

Manufacturer:

Protan AS

Place of production:

Protan AS Baches vei 1 3413 Lier, Norway

Management system:

ISO 9001 (95-OSL-AQ-6343) og ISO 14001 (NO 97-OSL-SYMI-8015)

Organisation no:

983 599 060

Issue date:

04.12.2024

Valid to:

04.12.2029

Year of study:

2023

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

Development and verification of EPD:

The declaration is created using EPD tool lca.tools ver EPD2022.03, developed by LCA.no. The EPD tool is integrated in the company's management system, and has been approved by EPD Norway. NEPDT10

Developer of EPD: Afsaneh Mohammadi

Reviewer of company-specific input data and EPD: Øyvind Johnstad Ruud

Approved:

Håkon Hauan Managing Director of EPD-Norway

Product:

Product description:

Ektafol PV 1.2 is a roofing membrane made of plasticized PVC, reinforced with a polyester textile. The material is enhanced with stabilizers to ensure excellent durability under exposure to extreme temperatures, UV radiation, and atmospheric pollutants. Additionally, the product offers improved fire resistance. The membranes are joined using hot-air welding, providing a strong and reliable seal.

Product specification

Ektafol roofing membranes are primarily used as exposed, mechanically fastened coverings on sloped and flat roofs. Ektafol PV is suitable for installation on all types of substrates but requires a separate migration barrier or leveling layer when applied over polystyrene substrates or during re-roofing projects.

Materials	kg	%
Additives	0,00	0,01
Chemical	0,02	1,19
Emissions and waste streams	0,10	7,42
E-PVC	0,20	14,91
Fillers	0,02	1,41
Fire-, heat- and UV-stabilizers	0,04	2,85
Pigments	0,00	0,19
Plasticizer	0,47	34,90
Polyester textile	0,08	5,94
S-PVC	0,42	31,17
Total	1,35	100,00
Packaging	kg	%
Packaging	0,03	100,00
5 5		
Total incl. packaging	1,38	100,00

Technical data:

SINTEF approval: TG 2040

Market:

European market

Reference service life, product

30 years

Reference service life, building

50 years

LCA: Calculation rules

Declared unit:

1 m2 Protan Ektafol PV 1.2

Cut-off criteria:

All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

Allocation:

The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

Data quality:

Specific data for the product composition are provided by the manufacturer. They represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on registered EPDs according to EN 15804, Ostfold Research databases, ecoinvent and other LCA databases. The data quality of the raw materials in A1 is presented in the table below.

Materials	Source	Data quality	Year
Additives	ecoinvent 3.6	Database	2020
Chemical	ecoinvent 3.6	Database	2019
E-PVC	ecoinvent 3.6	Database	2019
Emissions and waste streams	LCA.no	Database	2024
Fillers	ecoinvent 3.6	Database	2019
Fire-, heat- and UV-stabilizers	ecoinvent 3.6	Database	2019
Packaging	ecoinvent 3.6	Database	2019
Pigments	ecoinvent 3.6	Database	2019
Plasticizer	ecoinvent 3.6	Database	2019
Polyester textile	ecoinvent 3.6	Database	2019
S-PVC	ecoinvent 3.6	Database	2019

System boundaries (X=included, MND=module not declared, MNR=module not relevant)

	Product sta	ige		uction on stage	Use stage					End of life stage				Beyond the system boundaries		
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De- construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling-potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Х	Х	Х	Х	Х	MND	MND	MND	MND	MND	MND	MND	Х	Х	Х	Х	Х

System boundary:

Additional technical information:

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Transport from production place to user (A4)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, over 32 tonnes, EURO 6 (km)	53,3 %	300	0,023	l/tkm	6,90
Assembly (A5)	Unit	Value			
Electricity, Norway (kWh)	kWh	0,07			
Waste, packaging, plastic film (LDPE), to average treatment (kg)	kg	0,00			
Waste, packaging, pallet, EUR wooden pallet, single use, average treatment (kg)	kg	0,03			
Waste, packaging, core board, to average treatment (kg)	kg	0,00			
Transport to waste processing (C2)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, over 32 tonnes, EURO 6 (km)	53,3 %	300	0,023	l/tkm	6,90
Waste processing (C3)	Unit	Value			
Waste treatment per kg Polyvinylchloride (PVC) membrane, incineration (kg)	kg	1,35			
Disposal (C4)	Unit	Value			
Landfilling of ashes from incineration of Polyvinylchloride (PVC) membrane (kg)	kg	0,22			
Benefits and loads beyond the system boundaries (D)	Unit	Value			
Substitution of electricity, in Norway (MJ)	MJ	1,38			
Substitution of thermal energy, district heating, in Norway (MJ)	MJ	20,89			

LCA: Results

The LCA results are presented below for the declared unit defined on page 2 of the EPD document.

Enviro	nmental impact									
	Indicator	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
P	GWP-total	kg CO ₂ -eq	3,09E+00	3,53E-02	4,92E-02	0	3,53E-02	2,71E+00	5,11E-02	-1,26E-01
P	GWP-fossil	kg CO ₂ -eq	3,13E+00	3,53E-02	2,46E-03	0	3,53E-02	2,70E+00	5,11E-02	-1,21E-01
P	GWP-biogenic	kg CO ₂ -eq	-3,58E-02	1,51E-05	4,67E-02	0	1,51E-05	1,10E-03	2,47E-05	-2,50E-04
Ð	GWP-luluc	kg CO ₂ -eq	2,15E-03	1,07E-05	6,92E-06	0	1,07E-05	2,11E-04	6,23E-06	-4,17E-03
Ò	ODP	kg CFC11 -eq	8,40E-07	8,51E-09	2,43E-10	0	8,51E-09	8,89E-08	3,29E-09	-8,82E-03
Ê	AP	mol H+ -eq	1,69E-02	1,14E-04	1,91E-05	0	1,14E-04	1,56E-03	1,41E-04	-9,98E-04
	EP-FreshWater	kg P -eq	1,54E-04	2,81E-07	1,27E-07	0	2,81E-07	7,96E-06	7,28E-07	-1,08E-05
	EP-Marine	kg N -eq	2,87E-03	2,49E-05	4,16E-06	0	2,49E-05	3,82E-04	4,07E-05	-3,26E-04
	EP-Terrestial	mol N -eq	3,28E-02	2,77E-04	4,76E-05	0	2,77E-04	4,09E-03	4,72E-04	-3,53E-03
	РОСР	kg NMVOC -eq	1,27E-02	1,09E-04	1,25E-05	0	1,09E-04	1,16E-03	1,27E-04	-9,73E-04
B	ADP-minerals&metals ¹	kg Sb-eq	1,17E-02	6,29E-07	1,35E-07	0	6,29E-07	5,70E-06	1,60E-07	-1,20E-06
A	ADP-fossil ¹	MJ	7,75E+01	5,73E-01	3,18E-02	0	5,73E-01	3,56E+00	3,15E-01	-1,73E+00
%	WDP ¹	m ³	2,06E+02	4,39E-01	3,89E+00	0	4,39E-01	7,27E+01	5,34E+00	-2,16E+01

GWP-total = Global Warming Potential total; GWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment: EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

1. The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

Remarks to environmental impacts

Addition	al environme	ntal impact indicators								
In	dicator	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
	PM	Disease incidence	1,46E-07	3,24E-09	1,71E-10	0	3,24E-09	1,02E-08	1,30E-09	-6,05E-08
(ini) B	IRP ²	kgBq U235 -eq	1,27E-01	2,50E-03	4,38E-04	0	2,50E-03	1,73E-02	1,67E-03	-1,11E-02
	ETP-fw ¹	CTUe	1,27E+02	4,19E-01	1,12E-01	0	4,19E-01	1,71E+02	8,89E-01	-9,42E+00
40.** ****	HTP-c ¹	CTUh	2,50E-09	0,00E+00	6,00E-12	0	0,00E+00	3,79E-10	4,70E-11	-1,72E-10
42 00	HTP-nc ¹	CTUh	7,31E-08	4,05E-10	1,71E-10	0	4,05E-10	4,02E-08	1,77E-09	-9,03E-09
	SQP ¹	dimensionless	1,35E+01	6,57E-01	1,67E-02	0	6,57E-01	1,30E+00	1,02E+00	-1,16E+01

PM = Particulate Matter emissions; IRP = Ionizing radiation – human health; ETP-fw = Eco toxicity – freshwater; HTP-c = Human toxicity – cancer effects; HTP-nc = Human toxicity – non cancer effects; SQP = Soil Quality (dimensionless)

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

1. The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

2. This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

Resource use										
	ndicator	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
î, S	PERE	MJ	6,17E+00	7,21E-03	2,88E-01	0	7,21E-03	4,54E-01	2,82E-02	-1,07E+01
	PERM	MJ	4,24E-01	0,00E+00	-4,24E-01	0	0,00E+00	0,00E+00	0,00E+00	0,00E+00
°≓ s	PERT	MJ	6,60E+00	7,21E-03	-1,36E-01	0	7,21E-03	4,54E-01	2,82E-02	-1,07E+01
Ð	PENRE	MJ	4,89E+01	5,73E-01	3,19E-02	0	5,73E-01	3,56E+00	3,15E-01	-1,73E+00
.Åa	PENRM	MJ	3,15E+01	0,00E+00	-1,27E-02	0	0,00E+00	0,00E+00	0,00E+00	0,00E+00
IA	PENRT	MJ	8,05E+01	5,73E-01	1,91E-02	0	5,73E-01	3,56E+00	3,15E-01	-1,73E+00
	SM	kg	1,09E-01	0,00E+00	0,00E+00	0	0,00E+00	0,00E+00	0,00E+00	0,00E+00
2	RSF	MJ	1,63E-01	2,52E-04	2,32E-04	0	2,52E-04	8,21E-03	6,94E-04	-1,87E-03
	NRSF	MJ	3,61E-02	8,45E-04	6,26E-04	0	8,45E-04	0,00E+00	4,61E-03	-6,34E-01
\$	FW	m ³	6,85E-02	6,52E-05	2,16E-03	0	6,52E-05	8,51E-02	2,92E-04	-1,29E-02

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non renewable primary energy excluding non-renewable primary energy resources; SENRE = Use of non renewable primary energy resources; SENRE = Use of secondary materials; PENRT = Total use of non renewable primary energy resources; SM = Use of secondary materials; RERT = Total use of non renewable primary energy resources; SM = Use of secondary materials; RERT = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of life - Wa	nd of life - Waste												
In	dicator	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D			
ā	HWD	kg	6,08E-03	3,13E-05	1,43E-05	0	3,13E-05	0,00E+00	1,94E-02	-8, 14E-05			
Ū	NHWD	kg	3,22E-01	4,98E-02	3,26E-02	0	4,98E-02	0,00E+00	1,96E-01	-4,09E-02			
3	RWD	kg	1,15E-04	3,91E-06	1,99E-07	0	3,91E-06	0,00E+00	7,31E-07	-9,07E-06			

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

En	d of life - Output flow												
	Indicat	tor	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D		
	ø۵	CRU	kg	0,00E+00	0,00E+00	0,00E+00	0	0,00E+00	0,00E+00	0,00E+00	0,00E+00		
	30	MFR	kg	1,47E-03	0,00E+00	1,64E-03	0	0,00E+00	0,00E+00	0,00E+00	0,00E+00		
	DF	MER	kg	2,08E-04	0,00E+00	2,89E-02	0	0,00E+00	1,35E+00	0,00E+00	0,00E+00		
	5D	EEE	MJ	5,49E-04	0,00E+00	2,01E-02	0	0,00E+00	1,38E+00	0,00E+00	0,00E+00		
	DI	EET	MJ	8,30E-03	0,00E+00	3,04E-01	0	0,00E+00	2,09E+01	0,00E+00	0,00E+00		

CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported energy electrical; EET = Exported energy thermal

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

Biogenic Carbon Content		
Indicator	Unit	At the factory gate
Biogenic carbon content in product	kg C	0,00E+00
Biogenic carbon content in accompanying packaging	kg C	1,27E-02

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2

Additional requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Source	Amount	Unit
Electricity, Norway (kWh)	ecoinvent 3.6	24,33	g CO2-eq/kWh

Dangerous substances

The product contains no substances given by the REACH Candidate list.

Indoor environment

Additional Environmental Information

Additional environmer	Additional environmental impact indicators required in NPCR Part A for construction products										
Indicator Unit A1-A3 A4 A5 C1 C2 C3 C4 D											
GWPIOBC	kg CO ₂ -eq	3,09E+00	3,53E-02	2,51E-03	0	3,53E-02	2,71E+00	5,35E-02	-1,24E-01		

GWP-IOBC: Global warming potential calculated according to the principle of instantaneous oxidation. In order to increase the transparency of biogenic carbon contribution to climate impact, the indicator GWP-IOBC is required as it declares climate impacts calculated according to the principle of instantaneous oxidation. GWP-IOBC is also referred to as GWP-GHG in context to Swedish public procurement legislation.

Bibliography

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures.

ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines.

EN 15804:2012+A2:2019 Environmental product declaration - Core rules for the product category of construction products.

ISO 21930:2017 Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products.

ecoinvent v3, Allocation, cut-off by classification, Swiss Centre of Life Cycle Inventories.

Iversen et al., (2018) eEPD v3.0 - Background information for EPD generator system. LCA.no report number 04.18.

Ruttenborg et al., (2023) EPD generator for NPCR022:2022 Part B for Roof waterproofing - Background information for EPD generator application and LCA data, LCA.no report number 10.23

NPCR Part A: Construction products and services. Ver. 2.0. March 2021, EPD-Norge.

NPCR 022 Part B for Roof waterproofing. Ver. 2.0 March 2022, EPD-Norge.

🕲 epd-norge	Program operator and publisher	Phone: +47 977 22 020
	The Norwegian EPD Foundation	e-mail: post@epd-norge.no
Global program operatør	Post Box 5250 Majorstuen, 0303 Oslo, Norway	web: www.epd-norge.no
	Owner of the declaration:	Phone: +47 94 01 78 58
S PROTAN	Protan AS	e-mail: lars.anisdahl@protan.no
	Baches vei 1, 3413 Lier, Norway	web: www.protan.no
LCA	Author of the Life Cycle Assessment	Phone: +47 916 50 916
	LCA.no AS	e-mail: post@lca.no
	Dokka 6A, 1671 Kråkerøy, Norway	web: www.lca.no
LCA	Developer of EPD generator	Phone: +47 916 50 916
	LCA.no AS	e-mail: post@lca.no
	Dokka 6A, 1671 Kråkerøy, Norway	web: www.lca.no
ECO PLATFORM	ECO Platform	web: www.eco-platform.org
	ECO Portal	web: ECO Portal