



EPD

# **Environmental Product Declaration**

REA 10\_ Arc Fault Protection System

Production site: Vaasa, Finland



| DOCUMENT KIND                                    | IN COMPLIANCE WITH           |        |          |      |
|--------------------------------------------------|------------------------------|--------|----------|------|
| Environmental Product Declaration                | ISO 14025 and EN 50693       |        |          |      |
| PROGRAM OPERATOR                                 | PUBLISHER                    |        |          |      |
| The Norwegian EPD Foundation                     | The Norwegian EPD Foundation |        |          |      |
| REGISTRATION NUMBER OF THE PROGRAM OPERATOR      | ISSUE DATE                   |        |          |      |
| NEPD-8323-7992-EN                                | 2024-12-06                   |        |          |      |
| VALID TO                                         | STATUS                       | SECURI | TY LEVEL |      |
| 2029-12-06                                       | Approved                     | Public | :        |      |
| OWNING ORGANIZATION                              | ABB DOCUMENT ID              | REV.   | LANG.    | PAGE |
| ABB Switzerland Ltd, Group Technology Management | 2NGA002385 A EN 1/19         |        |          |      |

| EPD Owner                 | ABB Switzerland Ltd, Group Technology Management                                                                                                     |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Organization No.          | CHE-101.538.426                                                                                                                                      |
| Manufacturer name         | ABB Oy                                                                                                                                               |
| and address               | Muottitie 2 A, Vaasa, Finland                                                                                                                        |
| Company contact           | Rainer Harju – rainer.harju@fi.abb.com                                                                                                               |
|                           | Product Line Manager                                                                                                                                 |
| Program operator          | The Norwegian EPD Foundation                                                                                                                         |
|                           | Post Box 5250 Majorstuen, 0303 Oslo, Norway                                                                                                          |
|                           | phone: +47 23 08 80 00, email: post@epd-norge.no                                                                                                     |
| Declared product          | REA 10_ Arc Fault Protection System                                                                                                                  |
| Product                   | The REA system is a fast and selective arc fault protection system for air-insulated                                                                 |
| description               | low voltage and medium voltage switchgear which is a natural constituent of modern                                                                   |
|                           | switchgear panels and a safety and security investment for older switchgear panels                                                                   |
| Functional unit           | to protect human lives and prevent or reduce material damage.  To protect an air insulated switchgear of a power system against arc faults, using an |
| runctional unit           | auxiliary voltage of 110 V DC, during a service life of 10 years and with a use rate of                                                              |
|                           | 100 % in Europe.                                                                                                                                     |
| Reference flow            | REA 101 main module, including related connectors and packaging.                                                                                     |
| Independent               | Independent verification of the declaration and data, according to ISO 14025:2010                                                                    |
| verification              |                                                                                                                                                      |
|                           | □ INTERNAL ⋈ EXTERNAL                                                                                                                                |
|                           |                                                                                                                                                      |
|                           | Independent verifier approved by EPD-Norge: Elisabet Amat                                                                                            |
|                           | .161                                                                                                                                                 |
|                           | Signature:                                                                                                                                           |
|                           | 91.6                                                                                                                                                 |
| Approved by               | Håkon Hauan, CEO EPD-Norge                                                                                                                           |
| ,                         |                                                                                                                                                      |
|                           | Signature: Haken Haugh                                                                                                                               |
|                           |                                                                                                                                                      |
| Reference PCR             | EN 50693:2019 – Product Category Rules for Life Cycle Assessments of Electronic and                                                                  |
|                           | Electrical Products and Systems.                                                                                                                     |
| B                         | EPDItaly007 – Electronic and Electrical Products and Systems, Rev. 3.0, 2023/01/13.                                                                  |
| Program                   | The Norwegian EPD Foundation/EPD-Norge, General Programme Instructions 2019,                                                                         |
| instructions<br>LCA study | Version 3.0, 2019/04/24. This EPD is based on the LCA study described in the LCA report 2NGA002384.                                                  |
| EPD type                  | Specific product with extrapolation rules                                                                                                            |
| EPD type<br>EPD scope     |                                                                                                                                                      |
| Product RSL               | Cradle-to-grave 10 years                                                                                                                             |
| Geographical              | Manufacturing (suppliers): Manufacturing (ABB): Downstream:                                                                                          |
| representativeness        | Global Finland Europe                                                                                                                                |
| Reference year            | 2023                                                                                                                                                 |
| LCA software              | SimaPro 9.5 (2023)                                                                                                                                   |
| LCI database              | Ecoinvent v3.9.1 (2022)                                                                                                                              |
| Comparability             | EPDs published within the same product category, though originating from different                                                                   |
|                           | programs, may not be comparable. Full conformance with a PCR allows EPD                                                                              |
|                           | comparability only when all stages of a life cycle have been considered. However,                                                                    |
|                           | variations and deviations are possible.                                                                                                              |
| 1 :-  - : ::              | The course of the declaration shall be liable for the condent in a lafe and the said                                                                 |

| VEL DOCUMENT ID. | REV. | LANG. | PAGE |
|------------------|------|-------|------|
| 2NGA002385       | A    | EN    | 2/19 |
|                  |      |       |      |

assessment data, and evidence.

The owner of the declaration shall be liable for the underlying information and evidence. EPD-Norge shall not be liable with respect to manufacturer, life cycle

Liability

## **Contents**

| Sustainability at ABB                | 4  |
|--------------------------------------|----|
| General Information                  |    |
| Constituent Materials                |    |
| LCA Background Information           | 8  |
| Inventory Analysis                   | 10 |
| Environmental Indicators             | 12 |
| Extrapolation rules                  | 14 |
| Additional Environmental Information | 17 |
| References                           | 18 |



## Sustainability at ABB

ABB is a leading global technology company that energizes the transformation of society and industry to achieve a more productive, sustainable future. By connecting software to its electrification, robotics, automation, and motion portfolio, ABB pushes the boundaries of technology to drive performance to new levels.

At ABB, we actively contribute to a more sustainable world, leading by example in our own operations and partnering with customers and suppliers to enable a low-carbon society, preserve resources, and promote social progress.



Learn more on our website <u>global.abb/group/en/sustainability</u> or scan the QR code.

|          | I              | L            | L    |       |      |
|----------|----------------|--------------|------|-------|------|
| STATUS   | SECURITY LEVEL | DOCUMENT ID. | REV. | LANG. | PAGE |
| Approved | Public         | 2NGA002385   | Α    | EN    | 4/19 |



### **General Information**

This Environmental Product Declaration is a "specific product EPD" with extrapolation rules. A single REA 101 main module is declared as reference product, and the results can be extrapolated for different extension module combinations according to the provided extrapolation rules. The EPD covers all combinations of REA 10, including related connectors and packaging.

The REA system is a fast and selective arc fault protection system for air-insulated low voltage and medium voltage switchgear which is a natural constituent of modern switchgear panels and a safety and security investment for older switchgear panels to protect human lives and prevent or reduce material damage.

The REA system offers one main module and three extension modules. The main module REA 101 can operate as a stand-alone device or in combination with other REA 101 modules, and with the REA 103, REA 105 or REA 107 extension modules. The extension modules REA 103 and REA 107 allow the number of sensor fibers and/or lens-type sensors to be increased to extend the area of protection. The use of the extension module REA 105 including fast trip outputs will allow protection schemes with increased selectivity to be created.

General technical specifications of the REA reference product are presented below.

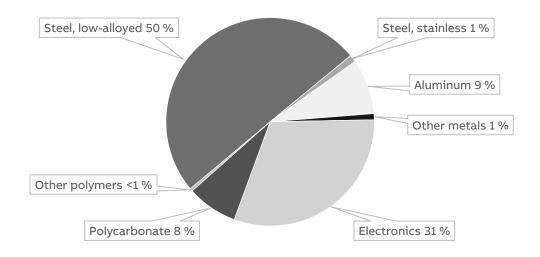
|         | Description                                 | REA 101 main module                        |  |  |
|---------|---------------------------------------------|--------------------------------------------|--|--|
|         | Width (frame)                               | 148.8 mm                                   |  |  |
|         | Width (housing)                             | 130.8 mm                                   |  |  |
|         | Height (frame)                              | 265.9 mm                                   |  |  |
|         | Height (housing)                            | 255.8 mm                                   |  |  |
| Size    | Depth (without rear plate protective cover) | 235.0 mm                                   |  |  |
|         | Depth (with rear plate protective cover)    | 245.1 mm                                   |  |  |
|         | Weight                                      | 4.8 kg                                     |  |  |
|         | Nominal auxiliary voltage Un                | 100, 110, 120, 220, 240 V AC, 50 and 60 Hz |  |  |
| Datings | Nominal auxiliary voitage Un                | 60, 110, 125, 220, 250 V DC                |  |  |
| Ratings | Measured nominal power @<br>110 V DC        | 6.3 W                                      |  |  |

ABB does not manufacture or assembly the product itself. Instead, it is outsourced and purchased from supplier as a ready product. The REA products are stored for redistribution at ABB in Vaasa, Finland. The manufacturing site uses 100 % renewable energy for the electricity (50/50 wind and hydro) and for heating (bioenergy) and is certified according to the following standards:

- ISO 9001:2015 Quality Management Systems
- ISO 14001:2015 Environmental Management Systems
- ISO 45001:2018 Occupational Health and Safety Management Systems
- ISO 50001:2018 Energy management systems

| STATUS                                     | SECURITY LEVEL | DOCUMENT ID. | REV. | LANG. | PAGE |
|--------------------------------------------|----------------|--------------|------|-------|------|
| Approved                                   | Public         | 2NGA002385   | Α    | EN    | 5/19 |
| © Copyright 2024 ABB. All rights reserved. |                |              |      |       |      |




## **Constituent Materials**

The constituent materials of the REA Reference Product are presented below.

| Туре         | Material           | Weight [kg] | Weight % |
|--------------|--------------------|-------------|----------|
|              | Steel, low-alloyed | 2.40        | 50       |
| Metals       | Steel, stainless   | 0.05        | 1        |
| Aluminum     |                    | 0.41        | 9        |
| Other metals |                    | 0.05        | 1        |
| Plastics     | Polycarbonate      | 0.38        | 8        |
| riastics     | Other polymers     | 0.02        | <1       |
| Others       | Electronics        | 1.48        | 31       |
| Total        |                    | 4.79        | 100      |

The extension modules weight range is  $1.1-1.2\ kg$  the same constituent materials are utilized.

### **REA 101 Reference Product**



| STATUS                                   | SECURITY LEVEL | DOCUMENT ID. | REV. | LANG. | PAGE |
|------------------------------------------|----------------|--------------|------|-------|------|
| Approved                                 | Public         | 2NGA002385   | A    | EN    | 6/19 |
| © Copyright 2024 ABB. All rights reserve | d.             |              |      |       |      |

The constituent materials of the packaging are presented below. Both primary packaging (unit) and secondary packaging (bulk) are considered. Per pallet, 12 pcs are assumed for the REA 101.

|                            | Description      | Material       | Weight [kg] | Weight % |
|----------------------------|------------------|----------------|-------------|----------|
|                            | Packaging box    | Cardboard      | 0.716       | 26       |
| Unit                       | Interior         | Cardboard      | 0.684       | 25       |
| (1 <sup>st</sup> )         | Documentation    | Printed paper* | 0.077       | 3        |
|                            | Subtotal         |                | 1.477       | 54       |
|                            | Pallet           | Wood*          | 0.883       | 32       |
|                            | Packaging box    | Cardboard*     | 0.092       | 3        |
|                            | Packaging cover  | Cardboard*     | 0.208       | 8        |
| Bulk<br>(2 <sup>nd</sup> ) | Protective edges | Cardboard      | 0.009       | <1       |
| •                          | Cushioning       | Kraft paper    | 0.084       | 3        |
|                            | Plastic straps   | PET            | 0.006       | <1       |
|                            | Subtotal         |                | 1.282       | 46       |
|                            | Total            |                | 2.759       | 100      |

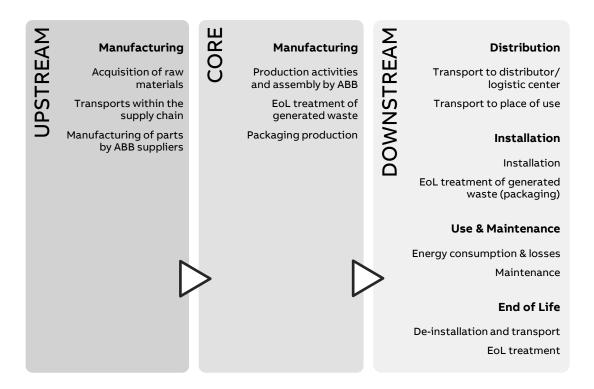
<sup>\*</sup>FSC- or PEFC-certified

Extension module packaging weighs 0.320 kg with the same packaging materials

| STATUS                                    | SECURITY LEVEL | DOCUMENT ID. | REV. | LANG. | PAGE |
|-------------------------------------------|----------------|--------------|------|-------|------|
| Approved                                  | Public         | 2NGA002385   | A    | EN    | 7/19 |
| © Convigent 2024 ARR All rights recovered |                |              |      |       |      |



## **LCA Background Information**


#### **Functional Unit**

The functional unit of this study is to protect an air insulated switchgear of a power system against arc faults, using an auxiliary voltage of 110 V DC, during a service life of 10 years and with a use rate of 100 % in Europe. The reference flow is a single REA 101 main module, including related accessories and packaging.

Note, the reference service life (RSL) of 10 years is a theoretical period selected for calculation purposes only – this is not representative for the minimum, average, nor actual service life of the product.

#### **System Boundaries**

The life cycle assessment is a "cradle-to-grave" analysis, and the system boundaries are defined according to EN 50693, as required by the PCR. For transparency reasons, the manufacturing stage is further divided into an upstream and core stage.



#### **Data quality**

Both primary and secondary data are used. The main sources for primary data are the bill of materials (BOM), CAD-files, technical drawings, and site-specific foreground data provided by ABB.

For all processes for which primary data are not available, generic background data originating from the ecoinvent v3.9.1 database, with system model "allocation, cut-off by classification", are used. The LCA software used for the calculations is SimaPro 9.5.

| STATUS                                     | SECURITY LEVEL | DOCUMENT ID. | REV. | LANG. | PAGE |
|--------------------------------------------|----------------|--------------|------|-------|------|
| Approved                                   | Public         | 2NGA002385   | Α    | EN    | 8/19 |
| © Copyright 2024 ABB. All rights reserved. |                |              |      |       |      |

#### **Allocation rules**

ABB does not manufacture or assembly the product itself, and the REA products are only stored for re-distribution at ABB in Vaasa, Finland. The energy consumption for storage is considered negligible. Therefore, no utility consumption and waste generation by ABB in the core manufacturing stage are allocated to the product. Thus, mass balance is not considered either.

For the end-of-life allocation, the "Polluter Pays" principle is adopted according to what is defined in the CEN/TR 16970 standard. However, the potential benefits and avoided loads from recovery and recycling processes are not considered because it is not required by the PCR.

#### **Cut-off** criteria

The PCR EPDItaly007 does not provide any details about cut-off criteria; it refers to chapter 4.2.3.3 in the standard EN 50693. According to EN 50693, the cut-off criteria can be set to a maximum of 5 % of the overall environmental impacts. In this LCA, labels as well as the tape and staples used in the packaging have been excluded as their weights are negligible.

| 0.0      |                |              |      |       |      |
|----------|----------------|--------------|------|-------|------|
| Approved | Public         | 2NGA002385   | A    | EN    | 9/19 |
| STATUS   | SECURITY LEVEL | DOCUMENT ID. | REV. | LANG. | PAGE |



### **Inventory Analysis**

#### Manufacturing Stage (upstream)

The life cycle inventory in the upstream manufacturing stage is based on the primary data available from ABB and background data from ecoinvent. Datasets are applied accordingly, to the best of our knowledge, to represent each material, manufacturing process, and surface treatment. Modelling decisions and assumptions that are highly relevant to the results are as following:

- Secondary raw materials content is considered when selecting datasets.
- Printed wiring boards are modelled on a component level, i.e., each component is considered and mapped with the most representative dataset available.
- The amount of gold used in each connector is considered, due to its high impact.

Additionally, supply chain transports are added as far as data is available between ABB, the suppliers, and sub-suppliers. Only primary suppliers are considered. The rest of the transports are assumed to already be included in ecoinvent's "market for"-processes.

### Manufacturing Stage (core)

ABB does not manufacture or assembly the product itself, and the REA products are only stored for re-distribution at ABB in Vaasa, Finland. The energy consumption for storage is considered negligible. Therefore, no utility consumption and waste generation by ABB in the core manufacturing stage are allocated to the product. Thus, mass balance is not considered either. The packaging materials also considered.

Modelling decisions and assumptions that are highly relevant to the results are as following:

100% renewable electricity and district heating is considered, which is procured by the ABB manufacturing site through Guarantees of Origins (GO's). In the use stage electricity is not calculated according to residual mix, but according to location-based approach.

#### Distribution

The transport distance from the ABB manufacturing site to the site of installation is assumed to be 300 km by lorry, as the actual distance is unknown. The environmental impacts can be multiplied accordingly if the actual distance is known.

|           | Dataset                                                 | Amount | Unit | Represent. |
|-----------|---------------------------------------------------------|--------|------|------------|
| Transport | Transport, freight, lorry 16-32 metric ton, EURO4 {RER} | 300    | km   | Assumption |

#### Installation

The installation phase only implies manual activities, and the energy consumed is negligible. Therefore, this phase only considers the end-of-life of the packaging materials used.

| STATUS                                     | SECURITY LEVEL | DOCUMENT ID. | REV. | LANG. | PAGE  |  |
|--------------------------------------------|----------------|--------------|------|-------|-------|--|
| Approved                                   | Public         | 2NGA002385   | A    | EN    | 10/19 |  |
| © Convigint 2004 ADD All sights recognised |                |              |      |       |       |  |

|                          | Scenario                                                              | Transport                       | Representation |
|--------------------------|-----------------------------------------------------------------------|---------------------------------|----------------|
| Packaging<br>End-of-Life | Packaging waste by waste<br>management operations<br>(Eurostat, 2021) | 100 km by lorry<br>(assumption) | Europe         |

#### Use

The use stage considers the measured nominal power consumption at 110 V DC over the reference service life of 10 years over the reference service life as defined in the functional unit. This is calculated using the following formula:

$$E_{use}[kWh] = \frac{P_{use} * 8760 * RSL * \alpha}{1000} = \frac{6.3 \text{ W} * 8760 \text{ hours} * 10 \text{ years} * 100 \%}{1000} = 551.9 \text{ kWh}$$

#### Where:

- $E_{use}$  = Total energy use over the reference service life
- $P_{use}$  = Reference power consumption in watts
- RSL = Reference Service Life in years
- $\alpha$  = Use time rate
- 8760 is the number of hours in a year
- 1000 is the conversion factor from W to kW

The energy mix of the European Union is adopted to represent an average European downstream scenario.

|        |                             | Datase | et |        | Amount | Unit               | Represent. |
|--------|-----------------------------|--------|----|--------|--------|--------------------|------------|
| Energy | Electricity,<br>market grou |        | _  | {RER}/ | 0.36   | kg CO₂-<br>eq./kWh | Europe     |

Maintenance is not considered because the REA does not have any required, planned, or preventive maintenance within its service life. Possible corrective maintenance is unusual, and thus considered negligible.

#### End of life

Decommissioning of the product only implies manual activities, and the energy consumed is negligible. Therefore, this phase only considers the end-of-life of the product.

|                        | Scenario                  | Transport                    | Representation |
|------------------------|---------------------------|------------------------------|----------------|
| Product<br>End-of-Life | IEC/TR 62635 (Annex D.3)* | 100 km by lorry (assumption) | Europe         |

<sup>\*</sup>A conservative approach is adopted by considering all parts as either: requiring selective treatment, difficult to process, or going through a separation process; no individual part is considered as a single recyclable material.

| STATUS                                   | SECURITY LEVEL | DOCUMENT ID. | REV. | LANG. | PAGE  |  |
|------------------------------------------|----------------|--------------|------|-------|-------|--|
| Approved                                 | Public         | 2NGA002385   | A    | EN    | 11/19 |  |
| © Copyright 2024 APP. All rights recoved |                |              |      |       |       |  |



## **Environmental Indicators**

In accordance with the PCR EPDItaly007, the environmental impact indicators are determined by using the characterization factors and impact assessment methods specified in EN 15804:2012+A2:2019.

#### **REA 101 Reference Product**

|                              |                         |          | Cradle-  | to-gate       |              |              |                     |             |
|------------------------------|-------------------------|----------|----------|---------------|--------------|--------------|---------------------|-------------|
|                              |                         |          |          |               | Cradle-t     | o-grave      |                     |             |
| Impact                       | Unit                    | Total    | UPSTREAM | UPSTREAM CORE |              | DOWN         | STREAM              |             |
| category                     | Onit                    | Total    | Manufa   | cturing       | Distribution | Installation | Use and maintenance | End-of-life |
| GWP – total                  | kg CO₂ eq.              | 2,96E+02 | 9,19E+01 | 4,52E-01      | 4,24E-01     | 1,06E+00     | 2,00E+02            | 2,53E+00    |
| GWP – fossil                 | kg CO₂ eq.              | 2,88E+02 | 9,12E+01 | 2,24E+00      | 4,23E-01     | 7,59E-02     | 1,92E+02            | 2,44E+00    |
| GWP – biogenic               | kg CO₂ eq.              | 6,95E+00 | 6,11E-01 | -1,82E+00     | 3,85E-04     | 9,89E-01     | 7,08E+00            | 9,20E-02    |
| GWP – luluc                  | kg CO₂ eq.              | 6,79E-01 | 1,67E-01 | 3,06E-02      | 2,07E-04     | 3,62E-05     | 4,80E-01            | 6,19E-04    |
| ODP                          | kg CFC-11 eq.           | 7,27E-06 | 3,64E-06 | 1,55E-07      | 9,27E-09     | 1,58E-09     | 3,45E-06            | 6,23E-09    |
| АР                           | mol H+ eq.              | 1,86E+00 | 8,77E-01 | 1,18E-02      | 1,75E-03     | 3,75E-04     | 9,64E-01            | 2,79E-03    |
| EP – freshwater              | kg P eq.                | 2,79E-01 | 1,03E-01 | 1,23E-03      | 2,98E-05     | 8,07E-06     | 1,75E-01            | 1,64E-04    |
| EP – marine                  | kg N eq.                | 3,10E-01 | 1,29E-01 | 6,02E-03      | 6,69E-04     | 5,63E-04     | 1,71E-01            | 1,74E-03    |
| EP – terrestrial             | mol N eq.               | 3,20E+00 | 1,64E+00 | 3,75E-02      | 7,14E-03     | 1,51E-03     | 1,51E+00            | 8,80E-03    |
| РОСР                         | kg NMVOC<br>eq.         | 9,53E-01 | 4,49E-01 | 1,14E-02      | 2,57E-03     | 5,85E-04     | 4,87E-01            | 2,51E-03    |
| ADP – minerals<br>and metals | kg Sb eq.               | 2,39E-02 | 2,35E-02 | 8,75E-06      | 1,37E-06     | 2,07E-07     | 3,82E-04            | 3,90E-06    |
| ADP – fossil                 | MJ, net calorific value | 5,64E+03 | 1,17E+03 | 3,21E+01      | 6,04E+00     | 9,65E-01     | 4,42E+03            | 5,82E+00    |
| WDP                          | m³ eq.                  | 6,83E+01 | 2,19E+01 | 1,10E+00      | 2,45E-02     | 1,09E-02     | 4,52E+01            | 1,00E-01    |

GWP-fossil: Global Warming Potential fossil; GWP-biogenic: Global Warming Potential biogenic; GWP-luluc: Global Warming Potential land use and land use change; ODP: Depletion potential of the stratospheric ozone layer; AP: Acidification potential; EP-freshwater: Eutrophication potential-freshwater compartment; EP-marine: Eutrophication potential-marine compartment; EP-terrestrial: Eutrophication potential-accumulated exceedance; POCP: Formation potential of tropospheric ozone; ADP-minerals & metals: Abiotic Depletion for non-fossil resources potential; ADP-fossil: Abiotic Depletion for fossil resources potential; WDP: Water deprivation potential.

| STATUS                              | SECURITY LEVEL | DOCUMENT ID. | REV. | LANG. | PAGE  |  |
|-------------------------------------|----------------|--------------|------|-------|-------|--|
| Approved                            | Public         | 2NGA002385   | A    | EN    | 12/19 |  |
| a Constitutional and all States and |                |              |      |       |       |  |

|              |                       |          | Cradle-  | to-gate  |              |              |                     |             |
|--------------|-----------------------|----------|----------|----------|--------------|--------------|---------------------|-------------|
|              |                       |          |          |          | Cradle-t     | o-grave      |                     |             |
| Resource use | Unit                  | Total    | UPSTREAM | CORE     |              | DOWNS        | STREAM              |             |
| parameters   | Onic                  | Total    | Manufa   | cturing  | Distribution | Installation | Use and maintenance | End-of-life |
| PENRE        | MJ, low cal.<br>value | 5,61E+03 | 1,15E+03 | 3,20E+01 | 6,04E+00     | 9,65E-01     | 4,42E+03            | 5,82E+00    |
| PERE         | MJ, low cal.<br>value | 9,83E+02 | 1,31E+02 | 3,04E+00 | 9,37E-02     | 1,93E-02     | 8,48E+02            | 5,62E-01    |
| PENRM        | MJ, low cal.<br>value | 2,80E+01 | 2,79E+01 | 1,35E-01 | 0,00E+00     | 0,00E+00     | 0,00E+00            | 0,00E+00    |
| PERM         | MJ, low cal.<br>value | 3,62E+01 | 7,06E-02 | 3,61E+01 | 0,00E+00     | 0,00E+00     | 0,00E+00            | 0,00E+00    |
| PENRT        | MJ, low cal.<br>value | 5,64E+03 | 1,17E+03 | 3,21E+01 | 6,04E+00     | 9,65E-01     | 4,42E+03            | 5,82E+00    |
| PERT         | MJ, low cal.<br>value | 1,02E+03 | 1,31E+02 | 3,91E+01 | 9,37E-02     | 1,93E-02     | 8,48E+02            | 5,62E-01    |
| FW           | m³                    | 4,31E+00 | 8,15E-01 | 3,38E-02 | 8,61E-04     | 3,76E-04     | 3,45E+00            | 3,63E-03    |
| MS           | kg                    | 2,80E+00 | 1,55E+00 | 1,25E+00 | 0,00E+00     | 0,00E+00     | 0,00E+00            | 0,00E+00    |
| RSF          | МЈ                    | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00     | 0,00E+00     | 0,00E+00            | 0,00E+00    |
| NRSF         | МЈ                    | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00     | 0,00E+00     | 0,00E+00            | 0,00E+00    |

PENRE: Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw material; PERE: Use of renewable primary energy excluding renewable primary energy resources used as raw material; PENRM: Use of nonrenewable primary energy resources used as raw material; PERM: Use of renewable primary energy resources used as raw material; PENRT: Total use of non-renewable primary energy resources (primary energy and primary energy resources used as raw materials); PERT: Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials); FW: Net use of fresh water; MS: Use of secondary materials; RFS: Use of renewable secondary fuels; NRSF: Use of non-renewable secondary fuels.

|               |      |          | Cradle-  | to-gate  |              |              |                     |             |
|---------------|------|----------|----------|----------|--------------|--------------|---------------------|-------------|
|               |      |          |          |          | Cradle-t     | o-grave      |                     |             |
| System output | Unit | Total    | UPSTREAM | CORE     |              | DOWNS        | STREAM              |             |
| indicators    | Onic | Total    | Manufa   | cturing  | Distribution | Installation | Use and maintenance | End-of-life |
| HWD           | kg   | 1,81E-02 | 1,22E-02 | 1,59E-04 | 3,85E-05     | 5,75E-06     | 5,60E-03            | 2,38E-05    |
| NHWD          | kg   | 2,72E+01 | 1,23E+01 | 6,44E-01 | 2,95E-01     | 5,41E-01     | 1,21E+01            | 1,38E+00    |
| RWD           | kg   | 3,46E-02 | 2,39E-03 | 5,82E-05 | 1,96E-06     | 3,71E-07     | 3,22E-02            | 1,05E-05    |
| MER           | kg   | 1,08E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00     | 4,34E-01     | 0,00E+00            | 6,50E-01    |
| MFR           | kg   | 5,13E+00 | 3,35E-01 | 0,00E+00 | 0,00E+00     | 1,83E+00     | 0,00E+00            | 2,97E+00    |
| CRU           | kg   | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00     | 0,00E+00     | 0,00E+00            | 0,00E+00    |
| ETE           | МЈ   | 3,73E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00     | 1,82E+00     | 0,00E+00            | 1,92E+00    |
| EEE           | МЈ   | 2,07E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00     | 1,01E+00     | 0,00E+00            | 1,06E+00    |

HWD: hazardous waste disposed; NHWD: non-hazardous waste disposed; RWD: radioactive waste disposed; MER: materials for energy recovery; MFR: material for recycling; CRU: components for reuse; ETE: exported thermal energy; EEE: exported electricity energy.

| STATUS                                   | SECURITY LEVEL | DOCUMENT ID. | REV. | LANG. | PAGE  |  |  |
|------------------------------------------|----------------|--------------|------|-------|-------|--|--|
| Approved                                 | Public         | 2NGA002385   | Α    | EN    | 13/19 |  |  |
| © Conviolet 2024 ARR All rights reserved |                |              |      |       |       |  |  |



Due to the possibilities of extending the REA 101 with different module combinations, extrapolation rules are established according to EN 50693. This allows for estimating more precise impacts of other various combinations. Also, the extrapolation rules have been tested with various REA combinations to ensure an accuracy of within ± 10% of the total environmental impacts. As a result, the following rules are established:

 The upstream manufacturing stage, core stage, distribution stage, use and maintenance stage, and end-of-life stage can be extrapolated, based on the type and number of extension module, using the following formula:

$$Impact = Impact_{ref} + (a_1 * n_1 + a_2 * n_2 + a_3 * n_3)$$

#### where

- Impact is the extrapolated value for any impact category
- *Impact<sub>ref</sub>* is the impact value of the reference product
- a is the impact value of extension module type
- *n* is the number of used extension module type
- The use stage is proportional to the actual, measured power consumption and can be extrapolated using the following formula:

$$Impact = Impact_{ref} * (\frac{P_{actual}}{6.3 \text{ W}})$$

#### where

- Impact is the extrapolated value for any impact category
- *Impact<sub>ref</sub>* is the impact value of the reference product
- $P_{actual}$  is the actual, measured power consumption
- 6.3 W is the nominal power consumption at 110 V DC

Example 1: REA 101 + REA 105, and a measured power consumption at 8.9 W.

- "GWP-total" in upstream = 91.9 kg CO2-eq + (35.2 \* 1) = 127 kg CO2-eq
- "GWP-total" in use stage = 200 kg CO2-eq \* (8.9 W / 6.3 W) = 282 kg CO2-eq

**Example 2**: REA  $101 + 2 \times REA 103 + 2 \times REA 105$ , and a theoretical power consumption at 14.9 W.

- "ADP-fossil" in distribution = 6.04 MJ + (1.13 \* 2 + 1.18 \* 2) = 10.7 MJ
- "ADP-fossil" in use stage = 4420 MJ \* (14.9 W / 6.3 W) = 10 454 MJ

An Excel tool for the extrapolation rules of REA is available at:

https://search.abb.com/library/Download.aspx?DocumentID=2NGA002397&LanguageCode=en&DocumentPartId=&Action=Launch

| STATUS                               | SECURITY LEVEL | DOCUMENT ID. | REV. | LANG. | PAGE  |  |
|--------------------------------------|----------------|--------------|------|-------|-------|--|
| Approved                             | Public         | 2NGA002385   | A    | EN    | 14/19 |  |
| a contributional app all tales and a |                |              |      |       |       |  |

| Impact                          |                      | Upstream             |                      | Core                                                              |                      | Distributio          | n                    | Install                                                           |                      | End-of-life          |                      |
|---------------------------------|----------------------|----------------------|----------------------|-------------------------------------------------------------------|----------------------|----------------------|----------------------|-------------------------------------------------------------------|----------------------|----------------------|----------------------|
| category                        | a <sub>1</sub> (103) | a <sub>2</sub> (105) | a <sub>3</sub> (107) | <b>a</b> <sub>1</sub> <b>a</b> <sub>2</sub> <b>a</b> <sub>3</sub> | a <sub>1</sub> (103) | a <sub>2</sub> (105) | a <sub>3</sub> (107) | <b>a</b> <sub>1</sub> <b>a</b> <sub>2</sub> <b>a</b> <sub>3</sub> | a <sub>1</sub> (103) | a <sub>2</sub> (105) | a <sub>3</sub> (107) |
| GWP – total                     | 2,28E+01             | 3,52E+01             | 2,07E+01             | 2,00E-02                                                          | 7,92E-02             | 8,27E-02             | 8,76E-02             | 1,27E-01                                                          | 3,78E-01             | 4,48E-01             | 4,15E-01             |
| GWP – fossil                    | 2,25E+01             | 3,48E+01             | 2,04E+01             | 2,83E-01                                                          | 7,91E-02             | 8,26E-02             | 8,75E-02             | 9,20E-03                                                          | 3,49E-01             | 4,18E-01             | 3,82E-01             |
| GWP –<br>biogenic               | 2,68E-01             | 3,28E-01             | 2,45E-01             | -2,66E-01                                                         | 7,20E-05             | 7,52E-05             | 7,97E-05             | 1,18E-01                                                          | 2,85E-02             | 2,89E-02             | 3,28E-02             |
| GWP – luluc                     | 3,89E-02             | 6,34E-02             | 3,51E-02             | 2,75E-03                                                          | 3,87E-05             | 4,04E-05             | 4,28E-05             | 4,27E-06                                                          | 1,43E-04             | 1,51E-04             | 1,64E-04             |
| ODP                             | 7,43E-07             | 1,38E-06             | 9,33E-07             | 2,09E-08                                                          | 1,73E-09             | 1,81E-09             | 1,92E-09             | 1,83E-10                                                          | 1,36E-09             | 1,46E-09             | 1,57E-09             |
| AP                              | 1,69E-01             | 2,77E-01             | 1,60E-01             | 1,51E-03                                                          | 3,27E-04             | 3,42E-04             | 3,62E-04             | 4,47E-05                                                          | 5,95E-04             | 6,40E-04             | 6,76E-04             |
| EP –<br>freshwater              | 2,28E-02             | 4,02E-02             | 2,32E-02             | 1,45E-04                                                          | 5,57E-06             | 5,82E-06             | 6,17E-06             | 1,02E-06                                                          | 3,76E-05             | 3,98E-05             | 4,28E-05             |
| EP – marine                     | 3,13E-02             | 4,82E-02             | 2,88E-02             | 6,28E-04                                                          | 1,25E-04             | 1,30E-04             | 1,38E-04             | 6,70E-05                                                          | 2,16E-04             | 2,33E-04             | 2,47E-04             |
| EP –<br>terrestrial             | 3,31E-01             | 5,16E-01             | 3,06E-01             | 4,43E-03                                                          | 1,33E-03             | 1,39E-03             | 1,48E-03             | 1,83E-04                                                          | 1,75E-03             | 1,92E-03             | 1,98E-03             |
| POCP                            | 9,84E-02             | 1,62E-01             | 9,31E-02             | 1,39E-03                                                          | 4,79E-04             | 5,01E-04             | 5,30E-04             | 6,87E-05                                                          | 5,19E-04             | 5,62E-04             | 5,88E-04             |
| ADP –<br>minerals<br>and metals | 5,49E-03             | 9,87E-03             | 5,92E-03             | 1,07E-06                                                          | 2,56E-07             | 2,67E-07             | 2,83E-07             | 2,44E-08                                                          | 9,60E-07             | 1,01E-06             | 1,10E-06             |
| ADP – fossil                    | 2,85E+02             | 4,42E+02             | 2,57E+02             | 4,09E+00                                                          | 1,13E+00             | 1,18E+00             | 1,25E+00             | 1,15E-01                                                          | 1,33E+00             | 1,40E+00             | 1,51E+00             |
| WDP                             | 4,36E+00             | 6,97E+00             | 3,60E+00             | 1,38E-01                                                          | 4,58E-03             | 4,78E-03             | 5,07E-03             | 1,08E-03                                                          | 1,89E-02             | 2,08E-02             | 2,26E-02             |

GWP-fossil: Global Warming Potential fossil; GWP-biogenic: Global Warming Potential biogenic; GWP-luluc: Global Warming Potential land use and land use change; ODP: Depletion potential of the stratospheric ozone layer; AP: Acidification potential; EP-freshwater: Eutrophication potential-freshwater compartment; EP-marine: Eutrophication potential-marine compartment; EP-terrestrial: Eutrophication potential-accumulated exceedance; POCP: Formation potential of tropospheric ozone; ADPminerals & metals: Abiotic Depletion for non-fossil resources potential; ADP-fossil: Abiotic Depletion for fossil resources potential; WDP: Water deprivation potential.

| Resource          | Upstream             |                      |                      | Core                                                              |                      | Distributio          | n                    | Install                                                           | End-of-life          |                      |                      |
|-------------------|----------------------|----------------------|----------------------|-------------------------------------------------------------------|----------------------|----------------------|----------------------|-------------------------------------------------------------------|----------------------|----------------------|----------------------|
| use<br>parameters | a <sub>1</sub> (103) | a <sub>2</sub> (105) | a <sub>3</sub> (107) | <b>a</b> <sub>1</sub> <b>a</b> <sub>2</sub> <b>a</b> <sub>3</sub> | a <sub>1</sub> (103) | a <sub>2</sub> (105) | a <sub>3</sub> (107) | <b>a</b> <sub>1</sub> <b>a</b> <sub>2</sub> <b>a</b> <sub>3</sub> | a <sub>1</sub> (103) | a <sub>2</sub> (105) | a <sub>3</sub> (107) |
| PENRE             | 2,82E+02             | 4,40E+02             | 2,54E+02             | 4,07E+00                                                          | 1,13E+00             | 1,18E+00             | 1,25E+00             | 1,15E-01                                                          | 1,33E+00             | 1,40E+00             | 1,51E+00             |
| PERE              | 3,19E+01             | 5,12E+01             | 2,84E+01             | 1,18E+00                                                          | 1,75E-02             | 1,83E-02             | 1,94E-02             | 2,26E-03                                                          | 1,30E-01             | 1,37E-01             | 1,48E-01             |
| PENRM             | 2,27E+00             | 2,85E+00             | 2,79E+00             | 2,02E-02                                                          | 0,00E+00             | 0,00E+00             | 0,00E+00             | 0,00E+00                                                          | 0,00E+00             | 0,00E+00             | 0,00E+00             |
| PERM              | 0,00E+00             | 0,00E+00             | 0,00E+00             | 4,24E+00                                                          | 0,00E+00             | 0,00E+00             | 0,00E+00             | 0,00E+00                                                          | 0,00E+00             | 0,00E+00             | 0,00E+00             |
| PENRT             | 2,85E+02             | 4,42E+02             | 2,57E+02             | 4,09E+00                                                          | 1,13E+00             | 1,18E+00             | 1,25E+00             | 1,15E-01                                                          | 1,33E+00             | 1,40E+00             | 1,51E+00             |
| PERT              | 3,19E+01             | 5,12E+01             | 2,84E+01             | 5,42E+00                                                          | 1,75E-02             | 1,83E-02             | 1,94E-02             | 2,26E-03                                                          | 1,30E-01             | 1,37E-01             | 1,48E-01             |
| FW                | 1,79E-01             | 2,88E-01             | 1,55E-01             | 4,15E-03                                                          | 1,61E-04             | 1,68E-04             | 1,78E-04             | 3,82E-05                                                          | 7,12E-04             | 7,76E-04             | 8,44E-04             |
| MS                | 2,92E-01             | 3,01E-01             | 3,32E-01             | 9,07E-02                                                          | 0,00E+00             | 0,00E+00             | 0,00E+00             | 0,00E+00                                                          | 0,00E+00             | 0,00E+00             | 0,00E+00             |

PENRE: Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw material; PERE: Use of renewable primary energy excluding renewable primary energy resources used as raw material; PENRM: Use of nonrenewable primary energy resources used as raw material; PERM: Use of renewable primary energy resources used as raw material; PENRT: Total use of non-renewable primary energy resources (primary energy and primary energy resources used as raw materials); PERT: Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials); FW: Net use of fresh water; MS: Use of secondary materials; RFS: Use of renewable secondary fuels; NRSF: Use of non-renewable secondary fuels.

| STATUS                               | SECURITY LEVEL | DOCUMENT ID. | REV. | LANG. | PAGE  |
|--------------------------------------|----------------|--------------|------|-------|-------|
| Approved                             | Public         | 2NGA002385   | Α    | EN    | 15/19 |
| © Copyright 2024 ARR All rights resu | arved          |              | 1    |       |       |

| Waste                    |          | Upstream             | ı                    | Core                                                              |                      | Distributio          | n                    | Install                                      |                      | End-of-life          |                      |
|--------------------------|----------|----------------------|----------------------|-------------------------------------------------------------------|----------------------|----------------------|----------------------|----------------------------------------------|----------------------|----------------------|----------------------|
| production<br>indicators |          | a <sub>2</sub> (105) | a <sub>3</sub> (107) | <b>a</b> <sub>1</sub> <b>a</b> <sub>2</sub> <b>a</b> <sub>3</sub> | a <sub>1</sub> (103) | a <sub>2</sub> (105) | a <sub>3</sub> (107) | a <sub>1</sub> a <sub>2</sub> a <sub>3</sub> | a <sub>1</sub> (103) | a <sub>2</sub> (105) | a <sub>3</sub> (107) |
| HWD                      | 2,31E-03 | 2,81E-03             | 2,31E-03             | 2,57E-05                                                          | 7,19E-06             | 7,50E-06             | 7,95E-06             | 6,84E-07                                     | 5,26E-06             | 5,62E-06             | 6,00E-06             |
| NHWD                     | 2,81E+00 | 3,87E+00             | 2,90E+00             | 7,16E-02                                                          | 5,52E-02             | 5,76E-02             | 6,10E-02             | 7,17E-02                                     | 1,88E-01             | 2,12E-01             | 2,18E-01             |
| RWD                      | 6,07E-04 | 9,88E-04             | 5,31E-04             | 7,42E-06                                                          | 3,67E-07             | 3,83E-07             | 4,06E-07             | 4,34E-08                                     | 2,52E-06             | 2,65E-06             | 2,89E-06             |
| MER                      | 0,00E+00 | 0,00E+00             | 0,00E+00             | 0,00E+00                                                          | 0,00E+00             | 0,00E+00             | 0,00E+00             | 5,67E-02                                     | 8,01E-02             | 1,01E-01             | 8,58E-02             |
| MFR                      | 2,05E-01 | 2,07E-01             | 2,34E-01             | 0,00E+00                                                          | 0,00E+00             | 0,00E+00             | 0,00E+00             | 1,97E-01                                     | 8,70E-01             | 8,92E-01             | 9,97E-01             |
| CRU                      | 0,00E+00 | 0,00E+00             | 0,00E+00             | 0,00E+00                                                          | 0,00E+00             | 0,00E+00             | 0,00E+00             | 0,00E+00                                     | 0,00E+00             | 0,00E+00             | 0,00E+00             |
| ETE                      | 0,00E+00 | 0,00E+00             | 0,00E+00             | 0,00E+00                                                          | 0,00E+00             | 0,00E+00             | 0,00E+00             | 2,34E-01                                     | 2,25E-01             | 2,83E-01             | 2,42E-01             |
| EEE                      | 0,00E+00 | 0,00E+00             | 0,00E+00             | 0,00E+00                                                          | 0,00E+00             | 0,00E+00             | 0,00E+00             | 1,30E-01                                     | 1,25E-01             | 1,57E-01             | 1,35E-01             |

HWD: hazardous waste disposed; NHWD: non-hazardous waste disposed; RWD: radioactive waste disposed; MER: materials for energy recovery; MFR: material for recycling; CRU: components for reuse; ETE: exported thermal energy; EEE: exported electricity energy.

| STATUS                                    | SECURITY LEVEL | DOCUMENT ID. | REV. | LANG. | PAGE  |  |
|-------------------------------------------|----------------|--------------|------|-------|-------|--|
| Approved                                  | Public         | 2NGA002385   | Α    | EN    | 16/19 |  |
| © Constitute 2024 ADD All sinher recently |                |              |      |       |       |  |



# Additional Environmental Information

### Circularity Values

The recycled content and recyclability potential of the product is calculated by dividing "MFR: material for recycling" in the end-of-life stage by the total weight of the product. The result is representative for Europe according to IEC/TR 62635 and are presented below.

|                     | Recyclability potential |
|---------------------|-------------------------|
| REA 101 (reference) | 62 %                    |

The recycled content and recyclability potential of the packaging is calculated by dividing "MS: Use of secondary materials" in the core manufacturing stage and "MFR: material for recycling" in the installation stage by the total weight of the packaging. The recycled content is based on primary data, and the recyclability potential is representative for Europe according to Eurostat (2021). The results are presented below.

|                                            | Recycled content | Recyclability potential |
|--------------------------------------------|------------------|-------------------------|
| Packaging materials<br>REA 101 (reference) | 45 %             | 66 %                    |

### Greenhouse gas emissions from the use of electricity in the manufacturing phase

Production mix from import, medium voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process.

| Energy mix                            | Source    | Amount | Unit           |
|---------------------------------------|-----------|--------|----------------|
| ABB FI custom energy mix; 50 % wind + | Ecoinvent | 0.028  | ka CO oa /k/Mb |
| 50 % hydro                            | v3.9.1    | 0.028  | kg CO₂-eq/kWh  |

#### **Dangerous substances**

The product complies with REACH and RoHS directive requirements and does not contain any of the listed materials in excess of the authorized proportions. For further information about REACH and RoHS, please visit the ABB webpage:

https://new.abb.com/contact/form

#### Indoor environment

The product meets the requirements for low emissions.

#### **Carbon footprint**

Carbon footprint has not been worked out for the product.

| STATUS   | SECURITY LEVEL | DOCUMENT ID. | REV. | LANG. | PAGE  |
|----------|----------------|--------------|------|-------|-------|
| Approved | Public         | 2NGA002385   | Α    | EN    | 17/19 |



# References

ecoinvent. ecoinvent v3.9.1 (2022). https://ecoinvent.org/the-ecoinvent-database/data-releases/ecoinvent-3-9-1/

European Committee for Standardization. (2019). Product category rules for life cycle assessments of electronic and electrical products and systems (EN 50693:2019).

European Committee for Standardization. (2019). Sustainability of constructions - Environmental product declarations (EN 15804·2012+A2·2019)

Eurostat. (2021). Packaging waste by waste management operations.

 $https://ec.europa.eu/eurostat/databrowser/view/ENV\_WASPAC/default/table?lang=en$ 

ICMQ S.p.A. (2023). PCR EPDItaly007-Electronic and electrical products and systems, rev. 3.0 (2023-01-13). EPDItaly. https://www.epditaly.it/en/view-pcr/

ICMQ S.p.A (2020b). Regulations of the EPDItaly Programme Regulations, rev. 5.2 (2020-02-16). EPDItaly. https://www.epditaly.it/en/wp-content/uploads/2016/12/EPDITALY-Regulament\_rev-5.2\_EN.pdf

International Electrotechnical Commission. (2012). Guidelines for end-of-life information provided by manufacturers and recyclers and for recyclability rate calculation of electrical and electronic equipment, Edition 1.0 (2012-10-1) (IEC/TR

International Organization for Standardisation. (2006). Environmental management - Life cycle assessment - Principles and framework (ISO Standard No. 14040:2006). https://www.iso.org/standard/37456.html

International Organization for Standardisation. (2006). Environmental management - Life cycle assessment - Requirements and guidelines (ISO Standard No. 14044:2006). https://www.iso.org/standard/38498.html

Kokko, V. (2024). Life Cycle Assessment Report: REA 10\_Arc Fault Protection System (Report No. 2NGA002384, rev. A). ABB Switzerland Ltd, Group Technology Management.

PRé Sustainability. (2023). SimaPro (version 9.5) [computer software]. https://presustainability.com/solutions/tools/simapro/

SeaRates. (2022). Shipping Distances & Time Calculator. https://www.searates.com/services/distances-time

The Norwegian EPD Foundation/EPD-Norge. (2019). General Programme Instructions 2019, Version 3.0 (2019-04-24).

https://www.epd-norge.no/getfile.php/1340010-

1685100696/Dokumenter/GPI%20Det%20norske%20EPD%20programmet%20approved%20240419%20-%20ver3%20updated%20250523.pdf

| STATUS                                    | SECURITY LEVEL | DOCUMENT ID. | REV. | LANG. | PAGE  |  |
|-------------------------------------------|----------------|--------------|------|-------|-------|--|
| Approved                                  | Public         | 2NGA002385   | A    | EN    | 18/19 |  |
| © Copyright 2024 ABB. All rights received |                |              |      |       |       |  |



**Program Operator and** publisher

The Norwegian EPD Foundation Post Box 5250 Majorstuen,

0303 Oslo, Norway

Ph. +47 23 08 80 00 email post@epd-norge.no

www.epd-norge.no



Owner of the declaration ABB Switzerland Ltd, Group

**Technology Management** Brown Boveri Straße 6, 5400

Baden, Switzerland

web www.abb.com



Author

Vilma Kokko ABB Oy Muottitie 2 A, Vaasa, Finland

Ph. web

web

+358 40 5753256 email vilma.kokko@fi.abb.com

www.abb.com

| STATUS   | SECURITY LEVEL | DOCUMENT ID. | REV. | LANG. | PAGE  |
|----------|----------------|--------------|------|-------|-------|
| Approved | Public         | 2NGA002385   | A    | EN    | 19/19 |