



# Environmental product declaration

in accordance with ISO 14025 and EN 15804+A2

# Crushed stone from Håkestad Quarry





The Norwegian EPD Foundation

# Owner of the declaration:

Larvik Granite AS

#### **Product**

Crushed stone from Håkestad Quarry

#### **Declared unit:**

1 tonne

# This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core PCR

NPCR 018:2022 Part B for natural stone products, aggregates and fillers

# Program operator:

The Norwegian EPD Foundation

#### **Declaration number:**

NEPD-7756-7124-EN

# **Registration number:**

NEPD-7756-7124-EN

**Issue date:** 09.10.2024

Valid to: 09.10.2029

#### **EPD** software:

LCAno EPD generator ID: 690981



#### **General information**

#### Product

Crushed stone from Håkestad Quarry

#### **Program operator:**

The Norwegian EPD Foundation Post Box 5250 Majorstuen, 0303 Oslo, Norway

Phone: +47 977 22 020 web: www.epd-norge.no

#### **Declaration number:**

NEPD-7756-7124-EN

#### This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR 018:2022 Part B for natural stone products, aggregates and fillers

#### Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

#### **Declared unit:**

1 tonne Crushed stone from Håkestad Quarry

# Declared unit with option:

A1,A2,A3,A4,C1,C2,C3,C4,D

#### **Functional unit:**

Not applicable.

# General information on verification of EPD from EPD tools:

Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Verification of each EPD is made according to EPD-Norway's guidelines for verification and approval requiring that tools are i) integrated into the company's environmental management system, ii) the procedures for use of the EPD tool are approved by EPD-Norway, and iii) the process is reviewed annually by an independent third party verifier. See Appendix G of EPD-Norway's General Programme Instructions for further information on EPD tools

#### **Verification of EPD tool:**

Independent third party verification of the EPD tool, background data and test-EPD in accordance with EPDNorway's procedures and guidelines for verification and approval of EPD tools.

Third party verifier:

Martin Erlandsson, IVL Swedish Res. Inst

(no signature required)

#### Owner of the declaration:

Larvik Granite AS
Contact person: Stephan Christian Kleive

Phone: +47 33 13 82 00 e-mail: sales@larvik-granite.no

#### Manufacturer:

Larvik Granite AS Storgata 128 N-3262 Larvik, Norway

#### Place of production:

Larvik Granite AS production site Håkestad (Norway) Håkestadveien 345 3280 Tjodalyng, Norway

#### Management system:

#### **Organisation no:**

NO 930307378

#### Issue date:

09.10.2024

#### Valid to:

09.10.2029

#### Year of study:

2022

#### **Comparability:**

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

#### **Development and verification of EPD:**

The declaration is created using EPD tool lca.tools ver EPD2022.03, developed by LCA.no. The EPD tool is integrated in the company's management system, and has been approved by EPD Norway.

Developer of EPD: Pedro Ferreira

Reviewer of company-specific input data and EPD: Børge Heggen Johansen, Energiråd AS

# Approved:

Håkon Hauan

Managing Director of EPD-Norway



#### **Product**

#### **Product description:**

Crushed stone produced at Håkestad Steinindustri.

The products are based on surplus material/exploded rock from natural stone production. Crushing and screening are carried out in mobile crushing plants.

#### **Product specification**

100% crushed stone of light coarse-grained Larvikite with a density of approximately 2.75 tons/m3.

| Materials | Value | Unit |
|-----------|-------|------|
| Stone     | 1000  | kg   |

#### Technical data:

Declarations of performance and CE documentation have been prepared for all fractions. The operation has been audited by the Norwegian Control Council and has certificate 1111-CPR-0780.

#### Market:

Local market in Vestfold, and for export to Europe.

#### Reference service life, product

Depending on the area of application.

#### Reference service life, building or construction works

Normally, the lifespan of buildings is assumed to be around 60 years.

#### LCA: Calculation rules

#### **Declared unit:**

1 tonne Crushed stone from Håkestad Quarry

#### **Cut-off criteria:**

All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

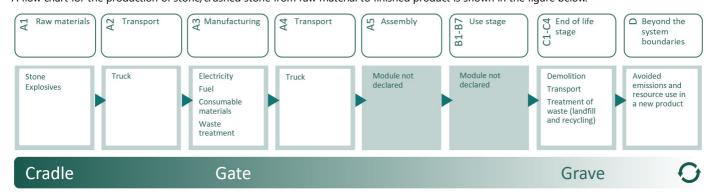
#### Allocation:

The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis. 1.9% of the raw materials for stone extraction are economically allocated to crushed stone. The remaining part is allocated to the production of granite blocks.

#### Data quality:

Specific data for the product composition are provided by the manufacturer. The data represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on EPDs according to EN 15804 and different LCA databases. The data quality of the raw materials in A1 is presented in the table below.




# System boundaries (X=included, MND=module not declared, MNR=module not relevant)

|                  | Product sta | ge            |           | uction<br>on stage |     |             |        | End of life stage |               |                              | Beyond the system boundaries |                                   |           |                     |          |                                        |
|------------------|-------------|---------------|-----------|--------------------|-----|-------------|--------|-------------------|---------------|------------------------------|------------------------------|-----------------------------------|-----------|---------------------|----------|----------------------------------------|
| Raw<br>materials | Transport   | Manufacturing | Transport | Assembly           | Use | Maintenance | Repair | Replacement       | Refurbishment | Operational<br>energy<br>use | Operational<br>water use     | De-<br>construction<br>demolition | Transport | Waste<br>processing | Disposal | Reuse-Recovery-<br>Recycling-potential |
| A1               | A2          | A3            | A4        | A5                 | B1  | B2          | В3     | B4                | B5            | В6                           | В7                           | C1                                | C2        | C3                  | C4       | D                                      |
| X                | X           | X             | X         | MND                | MND | MND         | MND    | MND               | MND           | MND                          | MND                          | X                                 | X         | X                   | X        | X                                      |

#### System boundary:

A1 is the extraction of natural stone. A2 includes the transport of explosives to the production plant. A3 is the actual production process of crushing stone blocks. A4 includes the transport of crushed stone and gravel for customers within a radius of 5.5 km.

A flow chart for the production of stone/crushed stone from raw material to finished product is shown in the figure below.



#### Additional technical information:

| Sorting/fractions | Number of crushing stages |
|-------------------|---------------------------|
| 0/800             | 0 (Blasting)              |
| 22/120            | 1                         |
| 0/20              | 1                         |
| 0/32              | 1                         |
| 0/63              | 1                         |
| 16/22             | 2                         |
| 20/64             | 2                         |
| 0/4               | 2                         |
| 4/16              | 2                         |
| 2/5               | 2                         |
| 0/2               | 2                         |



# LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Transport distance to customer (module A4) is 5.5km. Modules C and D show average values, based on Norwegian statistics, where 99% of the product is recycled as aggregate and 1% goes to landfill. 50 km in C2 can be used as an industry average.

| Transport from production place to user (A4)            | Capacity utilisation<br>(incl. return) % | Distance (km) | Fuel/Energy Consumption | Unit  | Value<br>(Liter/tonne) |
|---------------------------------------------------------|------------------------------------------|---------------|-------------------------|-------|------------------------|
| Truck, 16-32 tonnes, EURO 6 (km)                        | 36,7 %                                   | 6             | 0,043                   | l/tkm | 0,24                   |
| De-construction demolition (C1)                         | Unit                                     | Value         |                         |       |                        |
| Gravemaskin, 50 - 70 tonns (per liter diesel)           | L/DU                                     | 0,12          |                         |       |                        |
| Transport to waste processing (C2)                      | Capacity utilisation<br>(incl. return) % | Distance (km) | Fuel/Energy Consumption | Unit  | Value<br>(Liter/tonne) |
| Truck, 16-32 tonnes, EURO 6 (km)                        | 36,7 %                                   | 50            | 0,043                   | l/tkm | 2,15                   |
| Waste processing (C3)                                   | Unit                                     | Value         |                         |       |                        |
| Waste treatment of stone products after demolition (kg) | kg/DU                                    | 990,000000000 |                         |       |                        |
| Disposal (C4)                                           | Unit                                     | Value         |                         |       |                        |
| Waste, stone, for landfill (kg)                         | kg/DU                                    | 10,000000000  |                         |       |                        |
| Benefits and loads beyond the system boundaries (D)     | Unit                                     | Value         |                         |       |                        |
| Substitution of stone materials (kg)                    | kg/DU                                    | 990,000000000 |                         |       |                        |



#### **LCA: Results**

The LCA results are presented below for the declared unit defined on page 2 of the EPD document.

| Envir    | Environmental impact             |                        |                    |                       |                       |          |          |          |          |          |           |  |
|----------|----------------------------------|------------------------|--------------------|-----------------------|-----------------------|----------|----------|----------|----------|----------|-----------|--|
|          | Indicator                        | Unit                   | Extraction (A1-A3) | Crushing 1<br>(A1-A3) | Crushing 2<br>(A1-A3) | A4       | C1       | C2       | C3       | C4       | D         |  |
|          | GWP-total                        | kg CO <sub>2</sub> -eq | 3,53E-01           | 2,23E+00              | 4,56E+00              | 8,99E-01 | 4,46E-01 | 8,17E+00 | 7,13E-01 | 4,29E-02 | -2,31E+00 |  |
|          | GWP-fossil                       | kg CO <sub>2</sub> -eq | 3,53E-01           | 2,22E+00              | 4,55E+00              | 8,98E-01 | 4,45E-01 | 8,17E+00 | 7,03E-01 | 4,28E-02 | -2,27E+00 |  |
|          | GWP-biogenic                     | kg CO <sub>2</sub> -eq | 1,40E-04           | 4,84E-04              | 9,28E-04              | 3,72E-04 | 1,50E-04 | 3,38E-03 | 6,07E-03 | 3,64E-05 | -4,52E-02 |  |
|          | GWP-luluc                        | kg CO <sub>2</sub> -eq | 6,50E-05           | 1,86E-04              | 3,76E-04              | 3,20E-04 | 1,89E-04 | 2,91E-03 | 9,73E-04 | 8,40E-06 | -1,53E-03 |  |
| (3)      | ODP                              | kg CFC11 -eq           | 7,60E-08           | 4,79E-07              | 9,82E-07              | 2,04E-07 | 9,37E-08 | 1,85E-06 | 1,39E-07 | 2,09E-08 | -4,13E-07 |  |
| Œ.       | AP                               | mol H+ -eq             | 3,03E-03           | 2,37E-02              | 4,81E-02              | 2,58E-03 | 2,17E-03 | 2,35E-02 | 5,69E-03 | 4,18E-04 | -2,04E-02 |  |
|          | EP-FreshWater                    | kg P -eq               | 1,80E-06           | 8,30E-06              | 1,69E-05              | 7,18E-06 | 4,21E-06 | 6,53E-05 | 4,44E-05 | 3,20E-07 | -6,02E-05 |  |
|          | EP-Marine                        | kg N -eq               | 1,19E-03           | 1,04E-02              | 2,12E-02              | 5,11E-04 | 7,38E-04 | 4,64E-03 | 1,67E-03 | 1,57E-04 | -7,08E-03 |  |
|          | EP-Terrestial                    | mol N -eq              | 1,39E-02           | 1,15E-01              | 2,33E-01              | 5,71E-03 | 8,13E-03 | 5,19E-02 | 1,92E-02 | 1,73E-03 | -8,31E-02 |  |
|          | POCP                             | kg NMVOC -eq           | 3,66E-03           | 3,14E-02              | 6,38E-02              | 2,19E-03 | 2,47E-03 | 1,99E-02 | 5,14E-03 | 4,94E-04 | -2,19E-02 |  |
| ***      | ADP-minerals&metals <sup>1</sup> | kg Sb-eq               | 1,79E-06           | 3,52E-06              | 7,12E-06              | 2,48E-05 | 6,14E-06 | 2,26E-04 | 8,92E-06 | 3,79E-07 | -2,01E-04 |  |
|          | ADP-fossil <sup>1</sup>          | MJ                     | 4,94E+00           | 3,06E+01              | 6,26E+01              | 1,36E+01 | 6,27E+00 | 1,23E+02 | 2,18E+01 | 1,38E+00 | -3,83E+01 |  |
| <u>%</u> | WDP <sup>1</sup>                 | $m^3$                  | 3,14E+00           | 8,25E+00              | 1,51E+01              | 1,31E+01 | 2,78E+00 | 1,19E+02 | 2,41E+03 | 2,91E+00 | -1,80E+03 |  |

GWP-total = Global Warming Potential total; GWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment: EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption

#### **Remarks to environmental impacts**

Not applicable.

<sup>&</sup>quot;Reading example: 9,0 E-03 = 9,0\*10-3 = 0,009"

<sup>\*</sup>INA Indicator Not Assessed

<sup>1.</sup> The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator



| Additio  | Additional environmental impact indicators |                   |                    |                       |                       |          |          |          |          |          |           |  |
|----------|--------------------------------------------|-------------------|--------------------|-----------------------|-----------------------|----------|----------|----------|----------|----------|-----------|--|
| Inc      | dicator                                    | Unit              | Extraction (A1-A3) | Crushing 1<br>(A1-A3) | Crushing 2<br>(A1-A3) | A4       | C1       | C2       | C3       | C4       | D         |  |
|          | PM                                         | Disease incidence | 4,60E-08           | 6,16E-07              | 1,26E-06              | 5,50E-08 | 9,10E-09 | 5,00E-07 | 9,11E-08 | 8,90E-09 | -4,35E-07 |  |
|          | IRP <sup>2</sup>                           | kgBq U235 -eq     | 2,09E-02           | 1,31E-01              | 2,68E-01              | 5,94E-02 | 2,61E-02 | 5,40E-01 | 3,66E-01 | 6,00E-03 | -3,52E-01 |  |
|          | ETP-fw <sup>1</sup>                        | CTUe              | 3,51E+01           | 4,90E+01              | 6,65E+01              | 1,01E+01 | 5,05E+00 | 9,15E+01 | 1,55E+01 | 6,83E-01 | -3,95E+01 |  |
| 40.      | HTP-c <sup>1</sup>                         | CTUh              | 1,61E-10           | 6,80E-10              | 1,37E-09              | 0,00E+00 | 3,69E-10 | 0,00E+00 | 9,90E-10 | 2,00E-11 | -1,98E-09 |  |
| <b>₩</b> | HTP-nc <sup>1</sup>                        | CTUh              | 3,06E-09           | 1,55E-08              | 3,16E-08              | 1,10E-08 | 6,43E-09 | 1,00E-07 | 1,39E-08 | 4,00E-10 | -4,85E-08 |  |
|          | SQP <sup>1</sup>                           | dimensionless     | 6,25E-01           | 3,90E+00              | 7,99E+00              | 9,50E+00 | 8,12E-01 | 8,64E+01 | 1,23E+01 | 5,04E+00 | 8,70E+01  |  |

PM = Particulate Matter emissions; IRP = Ionizing radiation – human health; ETP-fw = Eco toxicity – freshwater; HTP-c = Human toxicity – cancer effects; HTP-nc = Human toxicity – non cancer effects; SQP = Potential Soil Quality Index (dimensionless)

<sup>&</sup>quot;Reading example: 9,0 E-03 = 9,0\*10-3 = 0,009" \*INA Indicator Not Assessed

<sup>1.</sup> The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the

<sup>2.</sup> This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.



| Resource us | Resource use |                |                    |                       |                       |          |           |          |          |          |           |  |
|-------------|--------------|----------------|--------------------|-----------------------|-----------------------|----------|-----------|----------|----------|----------|-----------|--|
| Inc         | dicator      | Unit           | Extraction (A1-A3) | Crushing 1<br>(A1-A3) | Crushing 2<br>(A1-A3) | A4       | C1        | C2       | C3       | C4       | D         |  |
|             | PERE         | MJ             | 1,63E-01           | 2,99E-01              | 4,77E-01              | 1,94E-01 | 7,04E-02  | 1,77E+00 | 1,12E+01 | 2,13E-02 | -8,98E+00 |  |
|             | PERM         | MJ             | 9,73E-05           | 9,73E-05              | 9,73E-05              | 0,00E+00 | 0,00E+00  | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00  |  |
| ₽ <b>s</b>  | PERT         | MJ             | 1,63E-01           | 2,99E-01              | 4,77E-01              | 1,94E-01 | 7,04E-02  | 1,77E+00 | 1,12E+01 | 2,13E-02 | -8,98E+00 |  |
|             | PENRE        | MJ             | 4,94E+00           | 3,06E+01              | 6,26E+01              | 1,36E+01 | 6,27E+00  | 1,23E+02 | 2,18E+01 | 1,38E+00 | -4,05E+01 |  |
| Åc          | PENRM        | MJ             | 4,76E-03           | 4,76E-03              | 4,76E-03              | 0,00E+00 | 0,00E+00  | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00  |  |
| IA          | PENRT        | MJ             | 4,94E+00           | 3,06E+01              | 6,26E+01              | 1,36E+01 | 6,27E+00  | 1,23E+02 | 2,18E+01 | 1,38E+00 | -4,05E+01 |  |
|             | SM           | kg             | 2,17E-03           | 1,43E-05              | 1,43E-05              | 0,00E+00 | 9,79E-03  | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00  |  |
| 2           | RSF          | MJ             | 1,08E-03           | 4,24E-03              | 8,56E-03              | 6,96E-03 | 1,97E-03  | 6,32E-02 | 0,00E+00 | 4,39E-04 | -1,84E-01 |  |
|             | NRSF         | MJ             | -3,44E-03          | 6,02E-02              | 1,23E-01              | 2,49E-02 | -3,42E-02 | 2,26E-01 | 0,00E+00 | 1,26E-03 | -1,89E-01 |  |
| 8           | FW           | m <sup>3</sup> | 1,98E-02           | 2,11E-02              | 2,27E-02              | 1,45E-03 | 6,25E-04  | 1,32E-02 | 3,74E-02 | 1,65E-03 | -1,41E+00 |  |

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non renewable primary energy resources; SM = Use of secondary materials; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

<sup>&</sup>quot;Reading example: 9,0 E-03 = 9,0\*10-3 = 0,009"

<sup>\*</sup>INA Indicator Not Assessed



| End of life - Waste |        |      |                    |                       |                       |          |          |          |          |          |           |
|---------------------|--------|------|--------------------|-----------------------|-----------------------|----------|----------|----------|----------|----------|-----------|
| Ind                 | icator | Unit | Extraction (A1-A3) | Crushing 1<br>(A1-A3) | Crushing 2<br>(A1-A3) | A4       | C1       | C2       | C3       | C4       | D         |
|                     | HWD    | kg   | 3,32E-04           | 2,22E-03              | 6,31E-03              | 7,01E-04 | 3,73E-04 | 6,37E-03 | 2,18E-03 | 0,00E+00 | -9,24E-03 |
| Ū                   | NHWD   | kg   | 9,00E-03           | 5,66E-02              | 1,37E-01              | 6,61E-01 | 1,81E-02 | 6,01E+00 | 6,89E-02 | 1,00E+01 | -2,80E-01 |
| 8                   | RWD    | kg   | 3,41E-05           | 2,12E-04              | 4,35E-04              | 9,25E-05 | 4,16E-05 | 8,41E-04 | 2,31E-04 | 0,00E+00 | -3,04E-04 |

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

"Reading example: 9,0 E-03 = 9,0\*10-3 = 0,009" \*INA Indicator Not Assessed

| End of life - O | End of life - Output flow |      |                    |                       |                       |          |          |          |          |          |          |  |
|-----------------|---------------------------|------|--------------------|-----------------------|-----------------------|----------|----------|----------|----------|----------|----------|--|
| Indica          | ator                      | Unit | Extraction (A1-A3) | Crushing 1<br>(A1-A3) | Crushing 2<br>(A1-A3) | A4       | C1       | C2       | C3       | C4       | D        |  |
| <b>@</b> D      | CRU                       | kg   | 0,00E+00           | 0,00E+00              | 0,00E+00              | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 |  |
| \$\             | MFR                       | kg   | 5,16E-04           | 1,91E-02              | 6,20E-02              | 0,00E+00 | 9,45E-03 | 0,00E+00 | 9,90E+02 | 0,00E+00 | 0,00E+00 |  |
| D₹              | MER                       | kg   | 6,59E-04           | 1,15E-03              | 2,48E-03              | 0,00E+00 | 2,36E-05 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 |  |
| 50              | EEE                       | MJ   | 4,00E-04           | 4,00E-04              | 4,02E-04              | 0,00E+00 | 1,71E-04 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 |  |
| DII             | EET                       | MJ   | 6,05E-03           | 6,06E-03              | 6,08E-03              | 0,00E+00 | 2,58E-03 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 |  |

CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported energy electrical; EET = Exported energy thermal

"Reading example: 9,0 E-03 = 9,0\*10-3 = 0,009" \*INA Indicator Not Assessed

| Biogenic Carbon Content                           |      |                     |  |  |  |  |  |  |  |  |
|---------------------------------------------------|------|---------------------|--|--|--|--|--|--|--|--|
| Indicator                                         | Unit | At the factory gate |  |  |  |  |  |  |  |  |
| Biogenic carbon content in product                | kg C | 0,00E+00            |  |  |  |  |  |  |  |  |
| Biogenic carbon content in accompanying packaging | kg C | 0,00E+00            |  |  |  |  |  |  |  |  |

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2



# **Additional requirements**

# Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

#### **Dangerous substances**

The product contains no substances given by the REACH Candidate list.

# **Indoor environment**

Not applicable.

# **Additional Environmental Information**

| Additional environmental impact indicators required in NPCR Part A for construction products |                        |                    |                       |                       |          |          |          |          |          |           |  |
|----------------------------------------------------------------------------------------------|------------------------|--------------------|-----------------------|-----------------------|----------|----------|----------|----------|----------|-----------|--|
| Indicator                                                                                    | Unit                   | Extraction (A1-A3) | Crushing 1<br>(A1-A3) | Crushing 2<br>(A1-A3) | A4       | C1       | C2       | C3       | C4       | D         |  |
| GWPIOBC                                                                                      | kg CO <sub>2</sub> -eq | 3,53E-01           | 2,23E+00              | 4,55E+00              | 8,99E-01 | 4,46E-01 | 8,17E+00 | 7,04E-01 | 4,29E-02 | -2,42E+00 |  |

GWP-IOBC: Global warming potential calculated according to the principle of instantaneous oxidation. In order to increase the transparency of biogenic carbon contribution to climate impact, the indicator GWP-IOBC is required as it declares climate impacts calculated according to the principle of instantaneous oxidation. GWP-IOBC is also referred to as GWP-GHG in context to Swedish public procurement legislation.



# **Bibliography**

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures.

ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines.

EN 15804:2012+A2:2019 Environmental product declaration - Core rules for the product category of construction products.

ISO 21930:2017 Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products.

ecoinvent v3, Allocation, cut-off by classification, Swiss Centre of Life Cycle Inventories.

Iversen et al., (2021) eEPD v2021.09 Background information for EPD generator tool system verification, LCA.no Report number: 07.21 Vold, M., and Iversen, O. M. K. (2022) EPD generator for NPCR 018 Part B for natural stone products, aggregates and fillers Background information for EPD generator application and LCA data, LCA.no report number: 09.22.

NPCR Part A: Construction products and services. Ver. 2.0, 24.03.2021 EPD Norway.

NPCR 018 Part B for natural stone products, aggregates and fillers, Ver. 1.1, 20.01.2022, EPD Norway.

| and norga                         | Program operator and publisher              | Phone:  | +47 977 22 020          |
|-----------------------------------|---------------------------------------------|---------|-------------------------|
| © epd-norge                       | The Norwegian EPD Foundation                | e-mail: | post@epd-norge.no       |
| Global program operatør           | Post Box 5250 Majorstuen, 0303 Oslo, Norway | web:    | www.epd-norge.no        |
|                                   | Owner of the declaration:                   | Phone:  | +47 33 13 82 00         |
| <u>&amp;</u><br>LARVIK<br>GRANITE | Larvik Granite AS                           | e-mail: | sales@larvik-granite.no |
| Stabilit Statis Minder            | Storgata 128, N-3262 Larvik, Norway         | web:    | larvik-granite.no       |
|                                   | Author of the Life Cycle Assessment         | Phone:  | +47 916 50 916          |
| (LCA)                             | LCA.no AS                                   | e-mail: | post@lca.no             |
| no                                | Dokka 6A, 1671 Kråkerøy, Norway             | web:    | www.lca.no              |
|                                   | Developer of EPD generator                  | Phone:  | +47 916 50 916          |
| (LCA)                             | LCA.no AS                                   | e-mail: | post@lca.no             |
| .no                               | Dokka 6A, 1671 Kråkerøy, Norway             | web:    | www.lca.no              |
| ECO PLATFORM                      | ECO Platform                                | web:    | www.eco-platform.org    |
| EPD                               | ECO Portal                                  | web:    | ECO Portal              |
| VERIFIED                          |                                             |         |                         |