
Ceiling Diffusers

Environmental Product Declaration

In accordance with ISO 14025:2006 and EN 15804:2012+A2:2019

Owner of the declaration

KB Klimatbyrån AB

Product name

Ceiling Diffusers

Declared unit

1 pc.

Product category /PCR

CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR 030:2021 Part B for ventilation components

Program holder and publisher

The Norwegian EPD foundation

Declaration number

NEPD-8639-8307-EN

Registration Number

NEPD-8639-8307-EN

Issue date

03.01.2025

Valid to

03.01.2030

Contents

General information	3
About Klimatbyrån	
Product development	4
Manufacturing	
Operations	
Solutions	4
Klimatbyrån Ceiling Diffusers	Ľ
Reference product – DRTI-160	
LCA: Calculation rules	6
System boundary	
LCA: Scenarios and additional technical information	-
Transport from production place to assembly/user (A4)	
Transport to waste processing (C2)	
Benefits and loads beyond the system boundaries (D)	

8
8
8
9
9
9
9
10
10
10
10
10
10
12

General information

Product

Ceiling diffusers (represented by DRTI-160)

Program holder

The Norwegian EPD Foundation

Post Box 5250 Majorstuen, 0303 Oslo, Norway *Phone*: +47 23 08 80 00 *E-mail*: post@epd-norge.no

Declaration Number

NEPD-8639-8307-EN

This declaration is based on Product Category Rules

CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR 030:2021 Part B for ventilation components

Statements

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer, life cycle assessment data and evidences.

Declared unit

1 pc. **DRTI-160**

Declared unit with option

A1-A3, A4 A5, C1, C2, C3, C4, D

Functional unit

Not relevant. Use phase not included.

Verification

Independent verification of the declaration and data, according to ISO14025:2010

Owner of the declaration

KB Klimatbyrån AB

Travbanegatan 6, 211 41 Malmö, Sweden *E-mail:* info@klimatbyran.se

Manufacturer

Airvent Légtechnikai Zrt

6000 Kecskemét, Belsőnyír 150, Hungary *E-mail:* avkecskemet@airvent.hu

Place of production

Airvent Légtechnikai Zrt

6000 Kecskemét, Belsőnyír 150, Hungary

Management system

ISO 9001, ISO 14001 and ISO 50001

Organisation No.

556478-8428

Issue date

03.01.2025

Valid to

03.01.2030

Year of study

2023-2024

Comparability

EPD's of construction products may not be comparable if they are not in compliance with EN 15804 and if the comparison is not made within a construction context.

The EPD has been worked out by

Kaspars Zudrags, BM Certification SIA

Ving

Silvia Vilčeková, SILCERT Ltd Independent verifier approved by EPD Norway

Approved

Manager of EPD Norway

About Klimatbyrån

We develop and supply ventilation products and demandcontrolled air management systems, prioritizing air quality, performance and energy efficiency.

Product development

40 years of knowledge
 enables us to create indoor climate solutions, built to last and to meet future conditions.

Manufacturing

 Continuous improvement governs our production by prioritizing recyclability and sustainable material choices.

Operations

– Environmental awareness is an integral part of our operations, from warehousing and sales to final delivery.

Solutions

– The core of our solutions is to provide a healthy and energysaving indoor climate for all facility types and user needs.

Product development

Klimatbyrån governs over four decades of accumulated knowledge within indoor climate. Our heritage drives our commitment to provide functional and sustainable air technology solutions. Our average products feature a life cycle of 25 years. This affects our choices and strategies as they have an impact on both current and future generations. Continuous improvement and adaptation of our solutions is a must to meet our customers' needs and expectations in the best possible way.

Manufacturing

A key focus in both our product development and manufacturing plant is the increased use of sustainable methods, materials and processes without compromising on quality. By prioritizing environmentally friendly resources and transitioning to new components made from recycled raw materials, we strive to ensure that our production aims for reduced environmental impact and increased recyclability and reusability.

Operations

At Klimatbyrån, energy efficiency is at the core of all our operations. From transport and sales to warehouse management and delivery practices. All our branches are powered with renewable energy from Swedish hydro power and we offset all CO_2 emissions generated from our business travel and domestic transportation. In addition, all transports from our EU based production plant are made by intermodal transport, with over 70 % of the land route being made by rail. With over a hundred trucks shipped annually, this significantly reduces our carbon footprint across Europe.

Solutions

Our goal is to supply durable, high-quality ventilation products, designed and manufactured with care, that improves indoor comfort and air quality of the building. Demand-controlled systems, that supply and regulate air distribution, have become a central key in the indoor-climate industry. Our solutions manage and secure a healthy indoor climate and improved energy efficiency, taking both facility operations, occupant needs and seasonal conditions into account.

Klimatbyrån ceiling diffusers

Reference product

DRTI-160

Product description

Our ceiling diffusers are primarily manufactured from galvanized steel and are available in various sizes and forms, tailored to different applications. The production methods and materials across these diffusers are largely consistent. This EPD provides an average environmental performance for our product range, as outlined below in the table **Included products and multiplication factors**.

The LCA analysis is based on a specific dataset for a representative product, DRTI-160. This product was selected based on its weighted average sales in 2023 and reflects typical material composition and production impacts. To investigate potential variations in results, a *worst case* product containing aluminum, DRTI-250, was also modeled and analyzed. The LCA analysis indicates that the environmental impact between them varies by less than 10%. Therefore, the DRTI-160 provides a representative assessment of the environmental performance for the entire ceiling diffuser product family.

DRTI-160 - Product specification

Materials	kg	%
Steel	3.46	94.8
Polypropylene	0.19	5.2
TOTAL	3.65	
Packaging – corrugated board	0.62	

Description and function

The DRT/DRTI is a ceiling-mounted supply air diffuser featuring rotatable nozzles designed for comfort ventilation in various settings, including offices, schools, retail stores, restaurants, and hospitals. The simple rotation of the aerodynamically shaped nozzles allows for flexible airflow patterns, ranging from horizontal, swirl, uni- or bidirectional, to vertical modes. Unless otherwise specified, the diffuser is delivered with nozzles positioned in a rotating pattern. The diffuser operates at low noise levels, ensuring a draft free and comfortable indoor environment. The difference between the DRT and DRTI is that the outer dimensions of the DRT type vary with connection sizes, while the DRTI maintains a consistent external dimension of 595x595 mm across all sizes.

Applications

The DRT/DRTI diffuser is ideal for ventilating comfort rooms where a draft free operation at low noise levels is important, such as offices, schools, retail stores, hospitals, and restaurants. The recommended maximum temperature difference (ΔT) between the room and the supplied air is -12°C.

Standard sizes

DRT: 125, 160, 200 (dimensions vary with connection sizes)

DRTI: 125, 160, 200, 250, 315, 400 (consistent external dimension of 595x595 mm across all sizes)

Airflow range

50 - 600 m³/h (14-160 l/s). The performance data of the DRT and DRTI are identical, differing only in their dimensions.

Materials

DRT: The front panel is made of galvanized steel. The frame is made of aluminum. The front diffuser plate and frame is powder coated in RAL 9003 white color. The nozzles are made of polypropylene.

DRTI: The front panel and frame (up to size 200) are made of galvanized steel. For sizes larger than 200, the frame is made of aluminum. Both the front diffuser plate and frame are powder-coated in RAL 9003 white color.

Market

Europe

Reference service life

> 25 years

LCA: Calculation rules

Declared unit

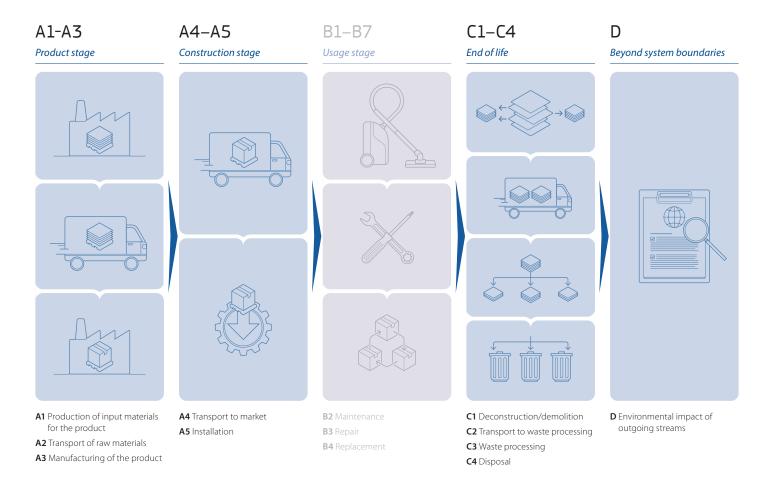
One ceiling diffuser – DRTI-160 (mass 3.65kg)

Cut-off criteria

All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

Allocation

Allocation is done following EN 15804+A2:2019 guidelines, with incoming energy, water, and waste generated on-site being evenly distributed among all products through mass allocation. The environmental impacts of producing recycled materials are attributed to the primary product in which they are utilized. Additionally, the recycling process and transportation of materials are taken into account in this analysis.


Data quality

Specific data for the product composition are provided by our manufacturer, Airvent Légtechnikai Zrt. They represent the production of the declared product and were collected for EPD development to year 2023. 06. 01. – 2024. 06. 01.

Materials	Source	Data quality	Year
Metals	ecoinvent 3.10	Database	2024
Polypropylene	ecoinvent 3.10	Database	2024
Corrugated board	ecoinvent 3.10	Database	2024

System boundary

Cradle to gate with options, modules C1-C4, module D (A1-A3 + A4 + A5 + C + D).

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Energy sources of the electricity used in manufacturing processes of module A3 are modeled using the mix of electricity, the average 0,4276kg CO2 eq./kWh. A4: Transport scenarios include EURO 6 truck transport for 307km, sea ferry 158km, train 747km. A5. The energy consumption of A5 and C1 model is considered negligible and module A5 includes only packaging utilization. C1: No loads in C1 have been generated as manual dismantling. C2: Transport to waste treatment site after dismantling using EURO 6 truck average (100 km assumed). C3: Assumed as 90% of ceiling diffuser is recycling. C4: Assumed as 10% of ceiling diffuser materials are goes to the landfill. D: Modeled as 90% of ceiling diffuser is recycling.

Transport from production place to assembly/user (A4)

Type	Capacity utilisation (incl. return) [%]	Type of vehicle	Distance KM	Fuel/Energy consumption	Value [l/t]
Truck	36.7	lorry 16-32 metric ton, EURO6	307	0.043	13.20
Railway	50	rail	747	0.002	1.49
Boat	50	ship	158	0.030	4.74

Assembly (A5)

	Unit	Value
Packaging cardboard, recycled – 89%	kg	0.55
Packaging cardboard, landfill – 5.5%	m³	0.03
Packaging cardboard, incineration – 5.5%	kWh	0.03

End of Life (C1, C3, C4)

	Unit	Value
Treatment of waste reinforcement steel, recycling	kg	3.69
Treatment of waste plastic, municipal incineration	kg	0.19
Treatment of scrap steel, landfill	kg	0.37

Transport to waste processing (C2)

Type	Capacity utilisation (incl. return) [%]	· · · · IVNA OT VANICIA		Fuel/Energy con- sumption	Value [l/t]
Truck	36.7	Lorry 16-32 metric ton, EURO5	100	0.043	13.20

Benefits and loads beyond the system boundaries (D)

	Unit	Value
Substitution of steel production	kg	3.32
Substitution of paper production	kg	0.55
Substitution of heat production	MJ	4.83
Substitution of thermal energy production	MJ	0.89

LCA: Results

System boundaries

X=included, MID=module not declared, MIR=module not relevant

Product stage				mbly		Use stage					Eı	nd of li	ife stag	je	Beyond system boundaries	
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling-potential
A1	A2	А3	A4	A5	B1	B2	B3	B4	B5	В6	В7	C1	C2	C3	C4	D
X	Χ	Χ	Χ	Χ	MID	MID	MID	MID	MID	MID	MID	Χ	Χ	Χ	Χ	X

Core environmental impact indicators

Parameter	Unit	A1-A3	A4	A5	C 1	C2	C 3	C4	D
GWP-total	kg CO ₂ -eq.	1,83E+01	5,04E-01	7,02E-01	0,00E+00	4,59E-02	6,88E-01	1,95E-03	-5,55E+00
GWP-fossil	kg CO ₂ -eq.	1,89E+01	5,04E-01	1,62E-02	0,00E+00	4,58E-02	6,88E-01	1,94E-03	-5,39E+00
GWP-biogenic	kg CO ₂ -eq.	-6,86E-01	1,09E-04	6,86E-01	0,00E+00	7,31E-06	4,46E-05	1,27E-06	-1,83E-01
GWP-IuIAC	kg CO ₂ -eq.	3,87E-02	2,58E-04	9,83E-06	0,00E+00	1,84E-05	2,31E-05	1,83E-06	4,29E-03
ODP	kg CFC11-eq.	7,23E-07	8,15E-09	4,37E-10	0,00E+00	6,75E-10	3,71E-09	7,86E-10	-5,64E-08
AP	mol H+ eq.	1,54E-01	4,44E-03	6,72E-05	0,00E+00	1,56E-04	2,19E-03	1,83E-05	-2,40E-02
EP-freshwater	kg N eq.	9,24E-04	5,77E-06	4,38E-07	0,00E+00	4,19E-07	9,40E-07	2,04E-08	-2,77E-04
EP-marine	kg N eq.	1,98E-02	1,32E-03	5,85E-05	0,00E+00	5,07E-05	1,02E-03	6,33E-06	-4,84E-03
EP-terrestrial	mol N eq.	4,92E-01	1,46E-02	1,78E-04	0,00E+00	5,59E-04	1,11E-02	6,96E-05	-5,69E-02
POCP	kg NMVOC eq.	6,33E-02	4,55E-03	6,70E-05	0,00E+00	2,30E-04	3,29E-03	2,02E-05	-1,89E-02
ADP-minerals & metals*	kg Sb eq.	3,41E-04	1,35E-06	1,99E-07	0,00E+00	1,28E-07	1,16E-07	4,46E-09	-5,51E-05
ADP-fossil*	MJ	2,56E+02	6,69E+00	1,14E-01	0,00E+00	6,65E-01	3,12E+00	5,33E-02	-5,59E+01
WDP*	m^3	7.87E+00	4.20E-02	5.63E-03	0.00E+00	3.19E-03	3.75E-02	1.69E-04	-1.02E+00

GWP-total: Global Warming Potential; GWP-fossil: Global Warming Potential fossil fuels; GWP-biogenic: Global Warming Potential biogenic; GWP-LULUC: Global Warming Potential land use and land use change; ODP: Depletion potential of the stratospheric ozone layer; AP: Acidification potential, Accumulated Exceedance; EP-freshwater: Eutrophication potential, fraction of nutrients reaching freshwater end compartment; See "additional requirements" for indicator given as PO4 eq. EP-marine: Eutrophication potential, fraction of nutrients reaching freshwater end compartment; EP-terrestial: Eutrophication potential, Accumulated Exceedance; POCP: Formation potential of tropospheric ozone; ADP-M&M: Abiotic depletion potential for non-fossil resources (minerals and metals); ADP-fossil: Abiotic depletion potential for fossil resources; WDP: Water deprivation potential, deprivation weighted water consumption.

Reading example: $9,0 E-03 = 9,0*10^{-3} = 0,009$

Resource use

Parameter	Unit	A1-A3	A4	A5	C 1	C2	C3	C4	D
RPEE	MJ	2,19E+01	1,68E-01	-1,20E+00	0,00E+00	8,72E-03	2,21E-02	4,63E-04	-1,23E+01
RPEM	MJ	8,24E+00	0,00E+00	-8,24E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	-1,10E-01
TPE	MJ	3,01E+01	1,68E-01	-9,44E+00	0,00E+00	8,72E-03	2,21E-02	4,63E-04	-1,24E+01
NRPE	MJ	2,51E+02	6,69E+00	1,13E-01	0,00E+00	6,65E-01	-3,86E+00	5,33E-02	-6,30E+01
NRPM	MJ	6,32E+00	0,00E+00	-2,60E-02	0,00E+00	0,00E+00	-6,29E+00	0,00E+00	7,08E+00
TRPE	MJ	2,57E+02	6,69E+00	8,70E-02	0,00E+00	6,65E-01	-1,02E+01	5,33E-02	-5,59E+01
SM	kg	1,77E+00	5,06E-03	3,04E-04	0,00E+00	2,83E-04	1,34E-03	1,12E-05	3,50E+00
RSF	MJ	6,51E-02	3,25E-05	1,50E-06	0,00E+00	3,59E-06	5,94E-06	2,92E-07	-5,67E-04
NRSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
W	m^3	1,76E-01	1,08E-03	-8,50E-06	0,00E+00	9,62E-05	7,12E-04	5,83E-05	-1,61E-02

RPEE Renewable primary energy resources used as energy carrier; RPEM Renewable primary energy resources used as raw materials; TPE Total use of renewable primary energy resources; NRPE Non renewable primary energy resources used as energy carrier; NRPM Non renewable primary energy resources used as materials; TRPE Total use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; W Use of net fresh water

End of life - waste

Parameter	Unit	A1-A3	A4	A5	C 1	C2	C3	C4	D
HW	kg	5,17E+00	1,68E-02	2,08E-03	0,00E+00	1,13E-03	1,13E-02	0,00E+00	-1,83E+00
NHW	kg	4,56E+01	3,05E-01	2,41E-01	0,00E+00	2,10E-02	2,59E-01	3,69E-01	-1,58E+01
RW	kg	7,63E-04	2,89E-06	4,55E-07	0,00E+00	1,44E-07	3,74E-07	0,00E+00	4,34E-06

HW Hazardous waste disposed; NHW Non hazardous waste disposed; RW Radioactive waste disposed

End of life – output flow

Parameter	Unit	A1-A3	A 4	A5	C 1	C2	C3	C4	D
CR	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
MR	kg	0,00E+00	0,00E+00	5,52E-01	0,00E+00	0,00E+00	3,32E+00	0,00E+00	0,00E+00
MER	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,92E-01	0,00E+00	0,00E+00
EEE	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	8,90E-01	0,00E+00	0,00E+00
ETE	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	4,83E+00	0,00E+00	0,00E+00

CR Components for reuse; MR Materials for recycling; MER Materials for energy recovery; EEE Exported electric energy; ETE Exported thermal energy recovery. The state of the

Information describing the biogenic carbon content at the factory gate

Biogenic carbon content	Unit	Value
Biogenic carbon content in product	kg C	0
Biogenic carbon content in the accompanying packaging	kg C	0,25

Additional requirements

Greenhouse gas emission from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Data source	Amount	Unit
Electricity production, hard coal	ecoinvent 3.10	1.1	g CO ₂ eq./kWh
Electricity production, nuclear, pressure water reactor	ecoinvent 3.10	0.0071	g CO ₂ eq./kWh
Electricity production, photovoltaic	ecoinvent 3.10	0.0833	g CO ₂ eq./kWh
Electricity production, hydro, run-of-river	ecoinvent 3.10	0.0044	g CO ₂ eq./kWh

Additional environmental impact indicators required in NPCR Part A for construction products

In order to increase the transparency of biogenic carbon contribution to climate impact, the indicator GWP-IOBC is required as it declares climate impacts calculated according to the principle of instantanious oxidation. GWP-IOBC is also reffered to as GWP-GHG in context to Swedish public procurement legislation.

Indicator	Unit	A1-A3	A4	A5	C 1	C2	C3	C4	D
GWP-IOBC	kg CO2 eq.	1.89E+01	5.04E-01	1.62E-02	0.00E+00	4.58E-02	6.88E-01	1.94E-03	-5.39E+00

GWP-IOBC Global warming potential calculated according to the principle of instantanious oxidation.

Dangerous substances

The product contains no substances given by the REACH Candidate list or the Norwegian priority list

Indoor environment

The product meets the requirements for low emissions.

Included products and multiplication factors

The multiplication factors in the table below can be used to scale LCA data for another product or size.

Name	Factor	Name	Factor	Name	Factor	Name	Factor
DCR		мно		NXT		RBF	
DCR-125		MHO-1200	10,38	NXT-160	1,42	RBF-1-1000	0,28
DCR-160	0,88	MHO-1800	15,37	NXT-200	1,42	RBF-1-1250	0,35
DCR-200		MHO-2400	20,75	NXT-250	1,86	RBF-1-1500	0,41
DCR-250	1,92	MHO-3000	24,89	PET		RBF-1-2000	0,55
DCR-315	2,36	MHOS		PET-125	0.41	RBF-1-500	0,15
DRT		MHOS-1200	10.20	PET-160	•	RBF-2-1000	0,44
DRT-125	0.52	MHOS-1800		PFT-200		RBF-2-1250	0,55
DRT-160		MHOS-2400			0,90	RBF-2-1500	0,65
DRT-200		MHOS-3000	•	PETI		RBF-2-2000	0,86
			24,09	PETI-125	,	RBF-2-500	0,23
DRTI		NAPT		PETI-160	,	S2D	
DRTI-125	1,00	NAPT-100	0,22	PETI-200	1,07	S2D-100	0.41
DDTI 160	4.00	NAPT-125	0,22	PETI-250	1,15	S2D-100	,
DRTI-160	1,00	NAPT-160	0,33	PETI-315	1,12	S2D-160	,
DRTI-200	110	NAPT-200		PETI-400	1,07		
		NAPT-250		PLI		S2V	
DRTI-250	, ,	NAPT-315	,	PLI-160	0,74	S2V-100	0,49
DRTI-315	, , , , , , , , , , , , , , , , , , , ,	NAPT-400	1,10	PLI-200		S2V-125	
DRTI-400		NHL		PLI-250	1,51	S2V-160	0,95
DRTX		NHL-160	0,33	PRC	,	SCP	
DRTX-400	0,25	NHL-200	0,33	PRC-125	1 22	SCP-100	0,14
DRTX-500	0,39	NHL-250	0,47	PRC-125		SCP-125	0,21
DRTX-595		NHLB				SCP-160	0,30
DXR		NHLB-125	1 22	PRC-200		SCP-200	0,45
DXR-100	0,93	NHLB-160		PRCI		SKV	
DXR-125		NHLB-200		PRCI-125		SKV-100	0.22
DXR-160	1,92	NHLB-250	,-	PRCI-160	1,23	SKV-100	•
DXR-200		INПLD-230	1,/3	PRCI-200	, , , , , , , , , , , , , , , , , , , ,	SKV-160	,
DXR-250		NLUN		PRCI-250		3/(V-100	
DXR-315	5,56	NLUN-600-600		PRCI-315	•	STD	
DXR-400		NPL		PRCI-400	1,53	STD-125	
E50		NPL-160	0,74	PRCX		STD-160	
F5O-100	0.05	NPL-200	1,04	PRCX-400	0,38	STD-200	
E5O-125		NPL-250	1,51	PRCX-500		STD-250	
F5O-160	*	NPR		PRCX-595	0,80	STD-315	0,32
E5O-200		NPR-160	1.07	PRN		TSK	
E5O-250		NPR-100	*	PRNX-400	0.20	TSK-100	0,12
E5O-315		NPR-250	•	PRNX-500		TSK-125	0,18
E5O-400			1,07	PRNX-595		TSK-160	
E5O-500	•	NRA		FNINA-393		TSK-200	0,41
E5O-630	*	NRA-200		PRQX		TSK-250	0,58
	0,7 /	NRA-250	1,00	PRQX-400	0,28	TSP/TSPE	
GMT		NRA-315	•	PRQX-500	•	TSP/TSPE-100	0.11
GMT-1200		NRA-400	2,33	PRQX-595	0,61	TSP/TSPE-125	,
GMT-1800	10,14	NXF		PU		TSP/TSPE-160	
IRB		NXF-160	1,42	PU-200	0,93	TSP/TSPE-200	
IRB-250		NXF-200	1,42	PU-250	1,41	TSP/TSPE-250	
IRB-315	1,86	NXF-250	1,86	PU-315			
IRB-400	2,68				•	VTD-S	
IRB-500				RASTER		VTD-S-100	
				RASTER	0,34	VTD-S-125	, , , , , , , , , , , , , , , , , , , ,
					,	VTD-S-160	0,14

Bibliography

ISO 14025:2010 Environmental labels and declarations – Type III environmental declarations

– Principles and procedures

ISO 14044:2006 Environmental management – Life cycle assessment – Requirements and guidelines

EN 15804:2012+A2:2019 Sustainability of construction works – Environmental product declarations

– Core rules for the product category of construction products.

NPCR Part A Construction products and services. Ver. 2.0. March 2021, EPD-Norge. *NPCR 026 Part B* for Furniture. Ver. 2.0 March 2022, EPD-Norge.

LCA background report 2024-10-10.

	Program Operator						
	The Norwegian EPD Foundation	tel	+47 23 08 80 00				
@ and narway	Post Box 5250 Majorstuen, 0303 Oslo	e-mail	post@epd-norge.no				
© epd-norway Global Program Operator	Norway	web	www.epd-norge.no				
	Publisher	tel	+47 23 08 80 00				
	The Norwegian EPD Foundation						
	Post Box 5250 Majorstuen, 0303 Oslo	e-mail	post@epd-norge.no				
	Norway	web	www.epd-norge.no				
	Owner of the declaration						
KB KLIMATBYRÅN	KB Klimatbyrån AB	tel	+46 (0)40-671 27 50				
REIMAIDIKAN	Travbanegatan 6, SE-211 41 Malmö.	e-mail	info@klimatbyran.se				
	Sweden	web	www.klimatbyran.se				
	Author of the life cycle assessment						
bm	K. Zudrags	tel	+371 67772135				
l certification	BM Certification SIA	e-mail	info@bmcertification.com				
	Latvia	web	www.bmcertification.com				
ECO PLATFORM	ECO Platform	web	www.eco-platform.org				
VERIFIED	ECO Portal	web	ECO Portal				

EPD for the best environmental decision

