

Environmental product declaration

in accordance with ISO 14025 and EN 15804+A2

Silver Pearl

Owner of the declaration: Larvik Granite AS

Product: Silver Pearl

Declared unit: 1 tonne

The Norwegian EPD Foundation

This declaration is based on Product Category Rules: CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR 018:2022 Part B for natural stone products, aggregates and fillers **Program operator:** The Norwegian EPD Foundation

Declaration number: NEPD-7070-6462-EN

Registration number:

NEPD-7070-6462-EN

Issue date: 05.07.2024

Valid to: 05.07.2029

EPD software: LCAno EPD generator ID: 646534

General information

Product

Silver Pearl

Program operator:

The Norwegian EPD Foundation Post Box 5250 Majorstuen, 0303 Oslo, Norway Phone: +47 977 22 020 web: www.epd-norge.no

Declaration number:

NEPD-7070-6462-EN

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR 018:2022 Part B for natural stone products, aggregates and fillers

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit:

1 tonne Silver Pearl

Declared unit with option:

A1-A3,A4,C1,C2,C3,C4,D

Functional unit:

Not applicable.

General information on verification of EPD from EPD tools:

Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Verification of each EPD is made according to EPD-Norway's guidelines for verification and approval requiring that tools are i) integrated into the company's environmental management system, ii) the procedures for use of the EPD tool are approved by EPD-Norway, and iii) the process is reviewed annually by an independent third party verifier. See Appendix G of EPD-Norway's General Programme Instructions for further information on EPD tools

Verification of EPD tool:

Independent third party verification of the EPD tool, background data and test-EPD in accordance with EPDNorway's procedures and guidelines for verification and approval of EPD tools.

Third party verifier:

Martin Erlandsson, IVL Swedish Res. Inst

(no signature required)

Owner of the declaration:

Larvik Granite AS Contact person: Stephan Christian Kleive Phone: +47 33 13 82 00 e-mail: sales@larvik-granite.no

Manufacturer:

Larvik Granite AS Storgata 128 N-3262 Larvik, Norway

Place of production: Not

Larvik Granite AS production site Håkestad (Norway) Håkestadveien 345 3280 Tjodalyng, Norway

Management system:

Organisation no:

NO 930307378

Issue date:

05.07.2024

Valid to: 05.07.2029

Year of study:

2022

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

Development and verification of EPD:

The declaration is created using EPD tool lca.tools ver EPD2022.03, developed by LCA.no. The EPD tool is integrated in the company's management system, and has been approved by EPD Norway.

Developer of EPD: Pedro Ferreira

Reviewer of company-specific input data and EPD: Børge Heggen Johansen, Energiråd AS

Approved:

Håkon Hauan Managing Director of EPD-Norway

Product

Product description:

Silver Pearl is a natural stone produced from an igneous rock of the monzonite (larvikite) type. It has a high content of feldspar. The crystals are assembled in such a way that a play of blue colors appears when the light is refracted in internal layers. The stone was formed by volcanic activity about 290 million years ago.

Product specification

Natural stone of monzonite (larvikite) is a durable material and is very suitable for facades, monuments, worktops, tiles, crushed stone and environmental stone.

Technical data:

Petrographic classification: Magmatic rocks - intrusive rock - Syenite (EN 12670)

Technical properties	Standard	Value
Hardness (Mohs)	-	6 - 7
Apparent density	EN 1936	2740 kg/m³
Porosity	EN 1936	0,1 %
Flexural strength	EN 12372	15,8 ± 0,8 MPa (E- = 14 MPa)
Compressive strength	EN 1926	194 ± 24 MPa (E- = 147 MPa)
Wear resistance	EN 14157	17 mm
Frost resistance	EN 12371	ОК

Market:

The market for stone blocks is China, Italy, Spain and India.

Reference service life, product

Depending on the area of use.

Reference service life, building or construction works

Normally, the lifespan of buildings is assumed to be around 60 years.

LCA: Calculation rules

Declared unit:

1 tonne Silver Pearl

Cut-off criteria:

All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

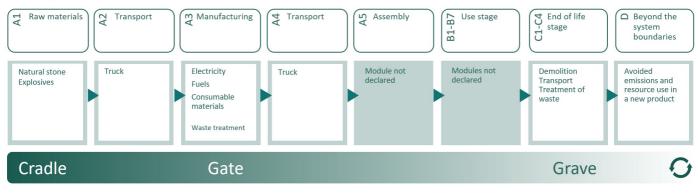
Allocation:

The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through economic allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis. The inputs were economically allocated, with 98.1% to Silver Pearl production.

Data quality:

Specific data for the product composition are provided by the manufacturer. The data represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on EPDs according to EN 15804 and different LCA databases.

Materials	Source	Data quality	Year
Explosives	ecoinvent 3.6	Database	2019
Explosives	NEPD-5024-3977-EN	EPD	2022
Explosives	NEPD-5025-3977-EN	EPD	2021
Stone	LCA.no	Database	2024



System boundaries (X=included, MND=module not declared, MNR=module not relevant)

	Product sta	ge	Constr installati	uction on stage	Use stage			End of life stage				Beyond the system boundaries				
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De- construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling-potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Х	Х	Х	Х	MND	MND	MND	MND	MND	MND	MND	MND	Х	Х	Х	Х	Х

System boundary:

A1 is extraction of natural stone. A2 stands for transport of explosives. A3 and A4 are the actual production process with formatting of rough blocks into stone blocks, depositing of masses, as well as transport to the market. A4 is the transport of rough blocks from the quarry to the nearest port. The raw blocks are exported from the production site by ship to larger factories abroad, which are responsible for the further processing.

Additional technical information:

Not applicable.

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Transport of explosives in the A2 from Drammen (96.3 km). The distance in A4 is calculated from the production site to the nearest port in Norway. Modules C and D present average values, based on Norwegian statistics. 50 km in C2 is used as an industry average.

Transport from production place to user (A4)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, 16-32 tonnes, EURO 6 (km)	36,7 %	10	0,043	l/tkm	0,41
De-construction demolition (C1)	Unit	Value			
Demolition of stone materials, C1 (kg)	kg/DU	1000,00000000			
Transport to waste processing (C2)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, over 32 tonnes, EURO 6 (km)	53,3 %	50	0,023	l/tkm	1,15
Waste processing (C3)	Unit	Value			
Waste treatment of stone products after demolition (kg)	kg/DU	700,00000000			
Disposal (C4)	Unit	Value			
Waste, stone, for landfill (kg)	kg/DU	300,00000000			
Benefits and loads beyond the system boundaries (D)	Unit	Value			
Substitution of stone materials (kg)	kg/DU	700,00000000			

LCA: Results

The LCA results are presented below for the declared unit defined on page 2 of the EPD document.

Environ	mental impact								
	Indicator	Unit	A1-A3	A4	C1	C2	C3	C4	D
P	GWP-total	kg CO ₂ -eq	3,52E+01	1,55E+00	4,00E+00	4,36E+00	5,04E-01	1,29E+00	-1,64E+00
P	GWP-fossil	kg CO ₂ -eq	3,51E+01	1,55E+00	4,00E+00	4,35E+00	4,97E-01	1,28E+00	-1,60E+00
P	GWP-biogenic	kg CO ₂ -eq	2,07E-02	6,42E-04	7,50E-04	1,87E-03	4,29E-03	1,09E-03	-3,20E-02
P	GWP-luluc	kg CO ₂ -eq	4,64E-03	5,52E-04	3,15E-04	1,33E-03	6,88E-04	2,52E-04	-1,08E-03
Ò	ODP	kg CFC11 -eq	7,27E-06	3,52E-07	8,64E-07	1,05E-06	9,80E-08	6,26E-07	-2,92E-07
Ê	AP	mol H+ -eq	4,84E-01	4,46E-03	4,19E-02	1,40E-02	4,02E-03	1,25E-02	-1,44E-02
	EP-FreshWater	kg P -eq	1,65E-04	1,24E-05	1,46E-05	3,47E-05	3,14E-05	9,59E-06	-4,26E-05
	EP-Marine	kg N -eq	1,99E-01	8,82E-04	1,85E-02	3,07E-03	1,18E-03	4,70E-03	-5,00E-03
	EP-Terrestial	mol N -eq	2,38E+00	9,87E-03	2,00E-01	3,42E-02	1,36E-02	5,18E-02	-5,88E-02
	РОСР	kg NMVOC -eq	5,92E-01	3,78E-03	5,57E-02	1,34E-02	3,64E-03	1,48E-02	-1,55E-02
#\$Đ	ADP-minerals&metals ¹	kg Sb-eq	7,68E-05	4,29E-05	6,14E-06	7,76E-05	6,31E-06	1,14E-05	-1,42E-04
A	ADP-fossil ¹	MJ	4,80E+02	2,35E+01	5,51E+01	7,07E+01	1,54E+01	4,15E+01	-2,71E+01
%	WDP ¹	m ³	5,03E+02	2,27E+01	1,17E+01	5,42E+01	1,70E+03	8,73E+01	-1,27E+03

GWP-total = Global Warming Potential total; GWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment: EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

1. The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

Remarks to environmental impacts

Not applicable.

Additional	environmental i	impact indicators							
li li	ndicator	Unit	A1-A3	A4	C1	C2	C3	C4	D
	PM	Disease incidence	1,00E-05	9,50E-08	5,07E-06	4,00E-07	6,44E-08	2,67E-07	-3,07E-07
()~() E	IRP ²	kgBq U235 -eq	2,01E+00	1,03E-01	2,40E-01	3,09E-01	2,59E-01	1,80E-01	-2,49E-01
	ETP-fw ¹	CTUe	7,99E+03	1,74E+01	3,01E+01	5,17E+01	1,09E+01	2,05E+01	-2,79E+01
484 * ****	HTP-c ¹	CTUh	1,25E-08	0,00E+00	1,00E-09	0,00E+00	7,00E-10	6,00E-10	-1,40E-09
4 <u>8</u>	HTP-nc ¹	CTUh	2,71E-07	1,90E-08	2,80E-08	5,00E-08	9,80E-09	1,20E-08	-3,43E-08
	SQP ¹	dimensionless	6,09E+01	1,64E+01	6,69E+00	8,11E+01	8,73E+00	1,51E+02	6,15E+01

PM = Particulate Matter emissions; IRP = Ionizing radiation – human health; ETP-fw = Eco toxicity – freshwater; HTP-c = Human toxicity – cancer effects; HTP-nc = Human toxicity – non cancer effects; SQP = Potential Soil Quality Index (dimensionless)

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

1. The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

2. This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

Resource use									
	ndicator	Unit	A1-A3	A4	C1	C2	C3	C4	D
î, G	PERE	MJ	3,30E+01	3,36E-01	3,00E-01	8,90E-01	7,95E+00	6,38E-01	-6,35E+00
	PERM	MJ	2,33E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
° ₽ 3	PERT	MJ	3,30E+01	3,36E-01	3,00E-01	8,90E-01	7,95E+00	6,38E-01	-6,35E+00
Ð	PENRE	MJ	4,79E+02	2,35E+01	5,51E+01	7,07E+01	1,54E+01	4,15E+01	-2,86E+01
. Åe	PENRM	MJ	1,14E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
IA	PENRT	MJ	4,80E+02	2,35E+01	5,51E+01	7,07E+01	1,54E+01	4,15E+01	-2,86E+01
	SM	kg	2,21E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
	RSF	MJ	9,30E-02	1,20E-02	0,00E+00	3,11E-02	0,00E+00	1,32E-02	-1,30E-01
Ū.	NRSF	MJ	9,51E-01	4,30E-02	0,00E+00	1,04E-01	0,00E+00	3,79E-02	-1,33E-01
۲	FW	m ³	4,69E+00	2,51E-03	2,83E-03	8,05E-03	2,64E-02	4,94E-02	-9,96E-01

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non renewable primary energy excluding non-renewable primary energy resources; SENRE = Use of non renewable primary energy excluding non-renewable primary energy resources; SENRE = Use of secondary materials; PENRT = Total use of non renewable primary energy resources; SM = Use of secondary materials; RSF = Use of renewable primary energy resources; SM = Use of secondary materials; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of life - Waste	End of life - Waste											
Indicator		Unit	A1-A3	A4	C1	C2	C3	C4	D			
	HWD	kg	5,43E-02	1,21E-03	1,62E-03	3,87E-03	1,54E-03	0,00E+00	-6,54E-03			
Ī	NHWD	kg	8,66E-01	1,14E+00	6,52E-02	6,15E+00	4,87E-02	3,00E+02	-1,98E-01			
	RWD	kg	3,31E-03	1,60E-04	3,82E-04	4,83E-04	1,63E-04	0,00E+00	-2,15E-04			

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of life - Output flo	End of life - Output flow											
Indicat	or	Unit	A1-A3	A4	C1	C2	C3	C4	D			
¢۵	CRU	kg	0,00E+00									
\$	MFR	kg	7,46E-02	0,00E+00	0,00E+00	0,00E+00	7,00E+02	0,00E+00	0,00E+00			
DB	MER	kg	1,44E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00			
5D	EEE	MJ	8,61E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00			
Þ	EET	MJ	1,30E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00			

CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported energy electrical; EET = Exported energy thermal

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

Biogenic Carbon Content									
Indicator	Unit	At the factory gate							
Biogenic carbon content in product	kg C	0,00E+00							
Biogenic carbon content in accompanying packaging	kg C	0,00E+00							

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2

Additional requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Source	Amount	Unit
Electricity, Norway (kWh)	ecoinvent 3.6	24,33	g CO2-eq/kWh

Dangerous substances

The product contains no substances given by the REACH Candidate list.

Indoor environment

Not applicable.

Additional Environmental Information

Additional environmental impact indicators required in NPCR Part A for construction products										
Indicator Unit A1-A3 A4 C1 C2 C3 C4 D								D		
GWPIOBC	kg CO ₂ -eq	3,52E+01	1,55E+00	4,00E+00	4,36E+00	4,98E-01	1,29E+00	-1,71E+00		

GWP-IOBC: Global warming potential calculated according to the principle of instantaneous oxidation. In order to increase the transparency of biogenic carbon contribution to climate impact, the indicator GWP-IOBC is required as it declares climate impacts calculated according to the principle of instantaneous oxidation. GWP-IOBC is also referred to as GWP-GHG in context to Swedish public procurement legislation.

Bibliography

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures.

ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines.

EN 15804:2012+A2:2019 Environmental product declaration - Core rules for the product category of construction products. ISO 21930:2007 Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products.

. ecoinvent v3, Allocation, cut-off by classification, Swiss Centre of Life Cycle Inventories.

Iversen et al., (2021) eEPD v2021.09 Background information for EPD generator tool system verification, LCA.no Report number: 07.21 Vold, M., and Iversen, O. M. K. (2022) EPD generator for for NPCR 018 Part B for natural stone products, aggregates and fillers Background information for EPD generator application and LCA data, LCA.no report number: 09.22.

NPCR Part A: Construction products and services. Ver. 2.0, 24.03.2021 EPD Norway.

NPCR 018 Part B for natural stone products, aggregates and fillers, Ver. 1.1, 20.01.2022, EPD Norway.

Cobal program operator	Program operator and publisher	Phone:	+47 977 22 020
	The Norwegian EPD Foundation	e-mail:	post@epd-norge.no
	Post Box 5250 Majorstuen, 0303 Oslo, Norway	web:	www.epd-norge.no
	Owner of the declaration:	Phone:	+47 33 13 82 00
	Larvik Granite AS	e-mail:	sales@larvik-granite.no
	Storgata 128, N-3262 Larvik, Norway	web:	larvik-granite.no
	Author of the Life Cycle Assessment	Phone:	+47 916 50 916
	LCA.no AS	e-mail:	post@lca.no
	Dokka 6A, 1671 Kråkerøy, Norway	web:	www.lca.no
	Developer of EPD generator	Phone:	+47 916 50 916
	LCA.no AS	e-mail:	post@lca.no
	Dokka 6A, 1671 Kråkerøy, Norway	web:	www.lca.no
	ECO Platform	web:	www.eco-platform.org
	ECO Portal	web:	ECO Portal